This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ **Make non-commercial use of the files** We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.

+ **Refrain from automated querying** Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.

+ **Maintain attribution** The Google “watermark” you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.

+ **Keep it legal** Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps readers discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/
Whittaker's List of Books.

MODERN OPTICAL INSTRUMENTS. By H. Orford. [Shortly. METRIC WEIGHTS AND MEASURES. By W. H. Wagstaff.
Gresham Professor of Geometry. In the press.
By G. A. T. Middleton, A.R.I.B.A., M.S.A., Author of 'Strains in
Structures,' &c., &c.

SURVEYING AND SURVEYING INSTRUMENTS. With 41 Illustrations.
4s. 6d.

Contents: Surveys with Chain only—Obstructions in Chain-Line and Right-Angle
Instruments—The Uses of the Level—Various forms of Level and their Adjustments—
The Uses of Angle-measuring Instruments—The Theodolite and other Angle-Measuring
Instruments—Instruments for Ascertaining Distances.

'This is a very neat little text-book, and very suitable for students preparing to pass
the Institute examinations.'—Journal of Royal Institution of British Architects.

BRITISH LOCOMOTIVES: their History, Construction, and Modern
Development. By C. J. Bowen Cooke, Assistant, London and North-Western
Crown 8vo. 7s. 6d.

'An excellent work... A very valuable addition to technical railway literature. It
ought to be in the library of every one concerned with railways or interested in them.
Every driver and fireman should possess a copy. It supplies a distinct want, and will,
we have no doubt, be in large demand in all parts of the world.'—Engineer.

By the late Sir George Findlay, Assoc. Inst. C.E., Vice-Chairman of the London
and North-Western Railway.

AN ENGLISH RAILWAY, THE WORKING AND MANAGEMENT
OF. Fifth Edition, thoroughly Revised and Enlarged, with a Short Biography of
Sir George Findlay, and Portrait, Appendix, and numerous Illustrations. Crown
8vo. cloth. 7s. 6d.

Contents: Management—The Staff—The Permanent Way—Signals and Inter-
locking—Telegraphs—Rolling Stock—Working of Trains—Shunting and Marshalling
of Goods Trains—Working of Goods Station—Rates and Fares—Division of Traffic—
The Railway Clearing House—The State and Railways—On the State Purchase of
Railways—Passenger Traffic—On the Law as between English Railway Companies
and the Public—On the Railway as a means of Defence—Index.

'This is a delightful book.'—Engineer.

'Sir George Findlay's book displays so much knowledge and ability that it well
deserves to rank as a standard work on the subject.'—Nature.

'A very interesting work throughout.'—Railway Engineer.

'Sir George Findlay's book will take a high position in the library of
practical science.'—Athenæum.

MODEL ENGINE CONSTRUCTION. With Practical Instructions to
Artificers and Amateurs. By J. Alexander. With 59 Illustrations, and 21 Sheets
of Working Drawings, by C. E. Jones. 324 pp. crown 8vo. 10s. 6d.

Excellent drawings and ample instructive matter.'—Daily Chronicle.

By A. J. Maginnis, M.Inst. N.A., recently Assistant Superintendent of the
White Star Line.

THE ATLANTIC FERRY. With Eighty Illustrations, many of them
cloth. 7s. 6d.

A Popular Edition, with about 50 Illustrations, 2s. 6d.

'Will furnish passengers with a compendious and authentic history of the develop-
ment, construction, and organisation of the great floating palaces which now conduct
the service of the ferry across the Atlantic.'—Times.

'Mr. Maginnis' handsome volume has had a well deserved success.'

'The work is one of great merit.'—Engineering.

'No one who is interested in steam navigation should be without a
copy.'—Marine Engineer.

London: WHITTKAKER & CO., Paternoster Square, E.C.
Whittaker's Library

Of Arts, Sciences, Manufactures, and Industries.

'Messrs. Whittaker's valuable series of practical manuals.'

Electrical Review.

By W. PRENN MAYCOCK, M.I.E.E.

FIRST BOOK OF ELECTRICITY AND MAGNETISM. Second Edition, Revised and Enlarged, with 107 Illustrations. 2s. 6d.
Students who purchase a copy, and carefully study it, will obtain an excellent groundwork of the science.'—Electrical Review.
As a first book for such students as have to pass examinations, it is admirable.'

Electrical Engineer.

By the Same Author.

We can congratulate Mr. Maycock upon having produced a book which cannot fail to be useful to all who are genuine students of electricity and its methods.'

Electrical Review.

FITTING, THE PRINCIPLES OF. For Engineer Students. By J. HORNER, M.I.M.E., Author of 'The Principles of Pattern Making,' 'Practical Iron founding,' and 'Metal Turning.' Illustrated with about 250 Engravings, and containing an Appendix of Useful Shop Notes and Memoranda. 5s.
A practical manual for practical people.'—English Mechanic.
'Calculated to aid and encourage the most useful set of handicraftsmen we have amongst us.'—Daily Chronicle.

THE PRINCIPLES OF PATTERN MAKING. Written specially for Apprentices, and for Students in Technical Schools. By J. HORNER, M.I.M.E., Author of 'Principles of Fitting,' 'Practical Iron founding,' 'Metal Turning,' &c. Illustrated with 101 Engravings, and containing a Glossary of the Common Terms employed in Pattern Making and Moulding. 3s. 6d.
The book is well illustrated, and for its size will be found one of the best of its kind.'

Industries.
'This is one of those works which have a more than ordinary value.'—Steamship.

PRACTICAL IRONFOUNDING. By J. HORNER, M.I.M.E., 'a Fore man Pattern Maker.' Illustrated with over 100 Engravings. Second Edition. 4s.
'Every pupil and apprentice would find it, we think, an assistance to obtaining a thorough knowledge of his work. The book, however, is not intended merely for the student, but contains much useful information for practical men.'

Industries.

METAL TURNING. By J. HORNER, M.I.M.E. With 81 Illustrations.

A handy little work.'—Ironmonger.
An exceedingly useful publication to have at hand.'—Machinery.
The book does what it professes to do, its aim being to explain and illustrate the practice of plain hand turning and slide-rest turning as performed in engineers' workshops.'—Industries.

[Continued at end of book.]

'An excellent work. . . A very valuable addition to technical railway literature. It ought to be in the library of everyone concerned with railways or interested in them. Every driver and fireman should possess a copy. It supplies a distinct want, and will, we have no doubt, be in large demand in all parts of the world.'—ENGINER.

MODEL ENGINE CONSTRUCTION. With Practical Instructions to Artificers and Amateurs. By J. ALEXANDER. With 59 Illustrations, and Twenty-one Sheets of Working Drawings by C. E. JONES. 324 pp. crown 8vo. 10s. 6d.

'Excellent drawings and ample instructive matter.'—DAILY CHRONICLE.

SURVEYING AND SURVEYING INSTRUMENTS. By G. A. T. MIDDLETON, A.R.I.B.A., M.S.A., Author of 'Strains in Structures,' &c. &c. With 41 Illustrations. 4s. 6d.

'This is a very neat little text-book, and very suitable for students preparing to pass the Institute examinations.'

Journ. of Royal Inst. of British Architects.

WHITTAKER & CO., Paternoster Square, E.C.
ENGINEER

DRAUGHTSMEN'S WORK

HINTS FOR BEGINNERS

BY A PRACTICAL DRAUGHTSMAN

ILLUSTRATIONS BY THE AUTHOR

LONDON
WHITTAKER & CO.
2 WHITE HART STREET, PATERNOSTER ROW
1896
PREFACE

IN preparing this little book the author has not aimed at imparting information to the practised draughtsman, and if any such should take it up and peruse it, they might consider it trite or commonplace. On the other hand, there are a large number of aspiring young men in schools, colleges, and workshops who desire to obtain entrance into drawing offices, but are perhaps in considerable ignorance of the work carried on in such places, or of what will be required from them when there, and also of the instruments and appliances which they will need. It is to these that the author more particularly desires to address himself, and if, after they have read this book, they find that they have derived any pleasure and profit from it, he will feel that his aim has been accomplished.

February 1896.
CONTENTS

CHAIR.

I. DESCRIPTION OF INSTRUMENTS 7
 Those Requisite for each Draughtsman—Those Usually
 Provided by the Office.

II. USE AND CARE OF INSTRUMENTS, WITH HINTS
 ON PREPARING DRAWINGS 19
 Setting Drawing Pen—Sectioning Drawings—Shading
 Drawings—Breaks.

III. FURTHER HINTS ON USE OF INSTRUMENTS . . 35
 Set Squares—Screws and Threads—Toothed Gearing.

IV. SKETCHING, DESIGNING, AND FACTOR OF SAFETY . 43

V. LEVELLING AND SURVEYING—INDICATING STEAM
 AND OTHER ENGINES—ESTIMATING 49

VI. BRANCHES OF SCIENTIFIC KNOWLEDGE ADVISABLE
 TO BE STUDIED BY DRAUGHTSMEN 58

VII. PREPARATION FOR DRAUGHTSMEN ENGAGED IN
 VARIOUS BRANCHES OF WORK 64
 Roof Bridge and Girder Work—Hydraulic Engineering—Electrical Work—Marine Engineering and
 Shipbuilding.
<table>
<thead>
<tr>
<th>CHAP</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII.</td>
<td>STRETCHING PAPER, MOUNTING DRAWINGS AND TRACINGS</td>
</tr>
<tr>
<td>IX.</td>
<td>TRACINGS AND BLUE OR BLACK-AND-WHITE PRINTS</td>
</tr>
<tr>
<td>X.</td>
<td>RECORD AND STORAGE OF DRAWINGS, TRACINGS, AND PRINTS</td>
</tr>
<tr>
<td>XI.</td>
<td>THE PLANIMETER AND ITS USE</td>
</tr>
<tr>
<td>XII.</td>
<td>CONCLUSION</td>
</tr>
</tbody>
</table>

Transferring Drawings—Scale of Chords—Dividing a Line into Equal Parts—List of Books for Draughtsmen.
CHAPTER I

DESCRIPTION OF DRAWING INSTRUMENTS AND APPLIANCES

There are certain instruments, &c., which it is really necessary for a draughtsman to possess, and which he usually has to provide for himself. We will, therefore, first give a list and explanation of these, with their approximate price, and then proceed to mention others that are usually provided by the office, or which the draughtsman can gradually add to his stock as he finds the need of them.

Fig. 1

First, then, to mention those things which are indispensable.
One pair of 6-inch compasses (fig. 1), double-
jointed, one leg to carry needles, the other to carry ink and pencil point only; there are several kinds of needle-points, but the one shown in fig. 2 is a very good one.

One pair of 4- or 5-inch dividers, which may be plain, as in fig. 3, or have a screw adjustment, as in fig. 4; the latter is very useful when it is required to open or close the dividers a minute distance.

One pair of 3-inch or 3½-inch pencil bows, double-jointed, with same class of needle-point in one leg as in 6-inch compasses, and one pair of ditto for ink (fig. 5).

Drawing pen, ivory handle, with hinged nib and thick back nib (fig. 6).

One 12-inch boxwood scale, oval section, with following scales upon it: 1/8, 1/4, 1/2, 1, 3/8, 3/4, 1½, and 3 inches.

One 60° set-square, and one 45° ditto; 9 or 10 inches long is a convenient size for these, and the best for use
are those of mahogany, framed, with ebony edges (edges not to be bevelled); if these are too expensive, framed sycamore and pear-wood, ordinary pear-wood, or vulcanite ones will do very well. The vulcanite squares, however, require cleaning very frequently. A framed set-square is shown in fig. 7, and a plain one in fig. 8.

One or two French curves; the one shown in fig. 9 is a useful one, and others can be obtained as required.
A fourfold rule, 2 feet long when open and 6 inches long and 1 inch wide when closed, marked in inches and $\frac{1}{8}$ inches on both sides, and with one 6-inch edge subdivided into $\frac{1}{16}$ inches.

One pair of "outside" steel callipers, and one pair of "inside" callipers (fig. 10).

One protractor for reading or marking off degrees; for ordinary work, a semicircular horn one (fig. 11) will do, about $4\frac{1}{2}$ inches diameter, but if for very important work a metal one more accurately divided off is better.

A nest of saucers, fitting one into the other, and about 3 inches in diameter (fig. 12).

Two paint brushes, about "swan" or "goose" size. Sable are the best, but are expensive. Those in camel hair are cheaper. They can be had in quills, or with fixed handles, as preferred (fig. 13).

Half-a-dozen drawing pins, with heads about $\frac{1}{4}$-inch diameter.

This completes the list of things that cannot be dispensed with, and the possessor of them will have the satisfaction of finding every one of them come in useful almost daily, instead of being saddled with a number of
superfluous instruments, some of which he may not want to use once in five years.

Taking average prices, the above outfit would cost about £4 5s. 3d., the items being as follow:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-inch compasses</td>
<td>1 10 0</td>
</tr>
<tr>
<td>4- or 5-inch dividers, without adjusting screw</td>
<td>0 3 6</td>
</tr>
<tr>
<td>3- or 3½-inch pencil bows</td>
<td>0 11 0</td>
</tr>
<tr>
<td>3 or 3½-inch ink bows</td>
<td>0 11 0</td>
</tr>
<tr>
<td>Drawing-pen</td>
<td>0 4 6</td>
</tr>
<tr>
<td>2-foot fourfold rule</td>
<td>0 4 6</td>
</tr>
<tr>
<td>12-inch scale, boxwood</td>
<td>0 2 6</td>
</tr>
<tr>
<td>Two framed set-squares, mahogany</td>
<td>0 7 6</td>
</tr>
<tr>
<td>French curve, pear-wood</td>
<td>0 0 6</td>
</tr>
<tr>
<td>Two pairs of callipers</td>
<td>0 4 6</td>
</tr>
<tr>
<td>Horn protractor</td>
<td>0 0 6</td>
</tr>
<tr>
<td>Nest of saucers, 3 inches in diameter</td>
<td>0 1 9</td>
</tr>
<tr>
<td>Two brushes, sable</td>
<td>0 3 0</td>
</tr>
<tr>
<td>Six’drawing pins</td>
<td>0 0 6</td>
</tr>
<tr>
<td>Total</td>
<td>£4 5 3</td>
</tr>
</tbody>
</table>

This total may be reduced by a few shillings by substituting pear-wood or vulcanite set-squares for those mentioned above, and probably the cost of the callipers may be saved, because in most cases men who have served their “time” in the shops generally have some by them which they have made themselves.

Having chosen one's instruments, it is a good plan to have a small neat box made to suit them, and this can be obtained for about three or four shillings, or, if preferred, a chamois leather wrap can be obtained, fitted with small loops for the instruments, and which can be folded up into a neat parcel.

We will now proceed to give a list and description
of instruments, materials, &c., used by draughtsmen which are in many cases provided by the office. All offices, however, do not have the same rules; for instance, in some the men have to find their own pencils, colours, &c., whereas in others they are found for them.

Drawing boards. The two most useful sizes are those suitable for "double elephant" paper and for "antiquarian" paper, the size of the D. E. paper being 40 inches by 27 inches, and the A. paper being 53 inches by 31 inches; the boards are made a little larger each way, viz. 42 inches by 29 inches and 55 inches by 33 inches. Most useful boards can be made of well-seasoned yellow pine, free from knots, ploughed and tongued, and glued together, and with battens under-

![Fig. 14](image1)

![Fig. 15](image2)

neath screwed to the boards by long screws passing through slotted holes in the battens, the holes being fitted with brass slotted pieces under the screw-heads to prevent the latter chafing the wood, and to allow for contraction and expansion of the boards; the battens should be parallel in depth if the desks are sloped, but if the desks are level the battens should be tapered (see fig. 14, showing under-side of "double elephant" board, and detail section through batten, fig. 15); it is as well to glue a strip of canvas or baize under each batten to keep screw-heads or brass pieces from scratching the desks.
Tee squares. The best material for these to be made from is mahogany, with ebony along the working edge. But as the ebony edge makes the squares more expensive it is frequently avoided, and the squares are made of plain mahogany or even bay wood; but the drawback to these lies in the fact that the edges soon wear uneven with the constant friction of the pens and pencils, and consequently often require truing up with the plane. This involves taking the blade off the stock, and when it is replaced it often happens that the angle of the two is slightly altered, especially if the blade is simply screwed on and is not fitted with dowels. The best shape for large squares suitable for double elephant and antiquarian boards is as shown in fig. 16, and the dimensions will enable anyone who has time and opportunity to make one for himself.

For small work, say from Imperial size downwards, ordinary pear-wood squares will suffice, but note that in all cases it is best to have the blade simply put on the stock, and not to have it recessed into it, so that the set-squares can pass the edge of the board when necessary (see fig. 17).

Besides the fixed tee squares just described, there
are others with adjustable headstocks (fig. 18) to enable the blade to be set at any angle with the edge of the board; these come in very handy when tracing from a drawing not executed by oneself, and when it is not convenient to have the square originally used, and for many other purposes.

Scales. There are all conceivable kinds of scales made to suit the various kinds of work from full size, or 12 inches to 1 foot, down to 1 mile to 1 inch or less. The clearest and most easily read scales, especially in the winter time, are those made in ivory, but as this material is very expensive and very subject to expansion and contraction with varying temperatures, many people prefer to use those made of boxwood. It is a good plan to have the latter French-polished, then when they get soiled they can be wiped with a damp cloth and made to look as good as new again.

Beam compasses or trammels. For ordinary work the best are those with open tops; then any lath, a loose blade of a tee square, or even a thick piece of cardboard, can be used for a bar, and one trammel should be fitted with an adjusting screw, as it is very difficult indeed to set them to an exact length without. For larger and perhaps rougher work closed tops are
the best, as the trammels then require to be screwed up more securely, and if the tops are open they are liable to be strained out of their proper shape. (See fig. 19 for open, and fig. 20 for closed top trammels.)

![Fig. 19](image1)

![Fig. 20](image2)

Fig. 19
*Fig. 20.—*Adjusting Screws.

Stencilling apparatus. This consists of sets of plates, usually of very thin copper, in which are cut the shapes of various forms of letters and figures. They are made both plain and ornamental, and the sizes vary from \(\frac{1}{2} \) inch to 1 inch deep. They are generally used to put the titles on drawings and on various views of a drawing, and words which frequently occur, such as "fig.," "section," "plan," &c., are engraved on one plate and can be used right off; but other words have to be made up by picking the proper letters from the alphabets one at a time, and it requires care and practice to stencil a title neatly on a drawing with these. It is a good help in this case to draw a pencil line as a base for the letters, and then carefully space them the same distance apart.

A very convenient form of stencil-plate is made as follows: each letter is on a separate plate of zinc, and this is notched at each side in a line with the base of
the letter, thus enabling the operator to set each letter exactly to a pencil line; and, further, the bottom edge of the plate is turned up with a small flange, which is a great convenience in handling it (see fig. 21).

Stencil plates for fancy bordering and corners are also often used.

See fig. 22 for some examples of plain and fancy letters and figures. Special ink and brushes are required, and are usually supplied with the plates, and it is necessary to have the ink of the right consistency when using it, for if it is too thick there will be a lack of sharpness in the letters, whilst, on the other hand, if too thin it will run under the plate and cause the edges of the letters to look blurred and ragged.

Planimeter. This is an instrument designed to measure areas on plans and drawings, and by its aid a great deal of time is saved in computing the areas of any irregular figures which will come under its range, but it takes a good deal of practice before one finds out all that can be done with the instrument. As we shall return to it later on we will leave it for the present.

Proportional compasses. In some special cases this is a useful instrument to aid in reducing or enlarging details on a plan or drawing. It is so marked and arranged that it can be adjusted to $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{4}$, &c.; but these proportions will only be correct as long as the points remain undamaged; if one of them is injured in
the least degree the instrument becomes inaccurate. See fig. 23 for an ordinary form of the instrument.

![Fig. 23](image)

Parallel ruler. These are made in various forms, and one of the most common is shown in fig. 24. These are all right as long as the joints do not get slack,

![Fig. 24](image)

but a better form is shown in fig. 25, which consists of an ebony straight-edge mounted on a pair of milled brass rollers, the latter being exactly the same diameter and both fast on one axis, so that they are obliged to move together.

Measuring staffs. Handy lengths for these are 5 feet and 10 feet long; the best are made of mahogany, with brass caps at the ends where the most wear takes place; the section should be about 1 ½ inches by ½ inches, and they should be divided into feet, inches, and ½ inches, the marks being stamped or cut into the wood and filled with white
paint. The staff itself should be polished or varnished to resist the action of damp.

![Fig. 35]

Measuring tape. These are made in various lengths, and one of the most useful is the one 66 feet, or one chain, long. Some are of linen strengthened with fine wire woven in, and others of steel. Tapes are used for measuring up buildings and ground plans, and it is necessary to frequently test those made of linen, as they gradually stretch. A good plan is to put permanent marks in the office floor or other suitable place at intervals of 10 feet, and then the tape can be tested by these whenever necessary, and the proper corrections made on the dimensions after they are taken from the buildings or other work.
CHAPTER II

USE AND CARE OF INSTRUMENTS, WITH HINTS ON PREPARING DRAWINGS

Pencils. For drawing lines take a moderately hard pencil, such as F or H, or No. 3 or 4, and make a rather long point of a chisel shape thus (fig. 26).

The advantages of this shaped point are that it enables the draughtsman to work close up to his squares, and that it lasts much longer than an ordinary round point; but it is a good plan to keep another pencil with a sharp round point, with which to write notes and dimensions on the drawing. Perhaps a hint on the sharpening of pencils will also not be out of place. After cutting the wood back with a sharp knife, bring the lead up to the required shape, either flat or round, by rubbing it gently on a rather smooth file, or on a
piece of smooth glasspaper mounted on a handy piece of wood. Small blocks can be obtained with several layers of glasspapers arranged upon them, and as each one wears away it can be stripped off. By this means the edge of the knife will be preserved, and a much better point on the pencil will be the result.

Drawing pen. Most draughtsmen know the comfort of having a drawing pen which works well, and if they own three or four pens there is generally one favourite one amongst them which they use to the exclusion of the others. If the differences between them were carefully analysed, they would generally be found to consist

![Fig. 27](image)

in the fact that the favourite pen was "set" better than the others. To set a pen properly is rather a difficult matter, and requires a good eye and a light touch; but there is no reason why every draughtsman should not be able to accomplish it, and we will endeavour to explain the method as clearly as possible. First get the nibs into a good shape by drawing the pen to and fro along the oilstone, and at the same time rocking it over from side to side, thus (fig. 27).
After this operation the shape of the nibs should be as shown in fig. 28. Then proceed to work up each nib to a nice edge in the following manner. Begin with the pen lying as in position A in fig. 29, and gently rub to and fro, gradually raising the pen to position B, at the same time revolving the pen between the finger and thumb through nearly half a circle; keep examining the nib, and when nearly up to a sharp edge turn the pen over, and get the other nib up in the same way; then wipe the pen clean and look right on the end of it, and if it is in good form there will be a spot of light on each nib. After thoroughly wiping off all the oil try the pen with ink for ruling thin and thick lines, and if it feels a bit scratchy get a piece of brown paper and draw the pen up and down it a few times, at the same time rocking it over, and this will
probably have the desired effect of making its action smooth.

During the whole operation of "setting" bring the nibs gently together with the screw until they just touch, and in getting each nib up separately be careful not to rub too long without examining it, or there there will be a danger of making one nib shorter than the other.

When the ink leg of the compass requires "setting," remove it from the compass, and proceed as in the case of setting the drawing pen. Having succeeded in "setting" our pen properly, we will now make a few suggestions on the proper use of it. In inking in a drawing it is generally the practice to "shade line" it—that is, to make all the lines on the top and the left-hand side of the objects thin, and those on the bottom and right-hand side thick, as in fig. 30. Theoretically this position of light and dark lines should apply to elevations, whilst those in plan should be light on the left and bottom and dark on the right and top; but it is generally the custom now to make plans and elevations all alike, viz. light on the left and top. When doing the fine lines set the pen to the required fineness by trying it upon a piece of scrap paper, and do not alter the screw afterwards until all the fine lines are done, neither to fill the pen with ink nor even to clean it. To fill it, lay the nib sideways in the ink (see fig. 31) when the latter will readily flow far enough into the pen, then with a rag wipe off carefully the ink from the outside of the pen, especially from the back nib, which comes against the squares. If the pen becomes
clogged, fold up an edge of the rag and draw it between the nibs; if this does not suffice, dip the nib into water about three-eighths of an inch, and wipe out again with a rag. Never leave ink in the pen to become set hard, but always wipe clean after using it, and never scrape out the pen with a knife, as nothing spoils a pen sooner than that. In drawing a line do not lean the pen towards or away from yourself,

but hold it so that both nibs are equally in contact with the paper, then you will obtain a firm clear line. When drawing the thick lines, adjust the pen to the desired thickness by trial, and then do not alter the screw until all the lines are done; by this means all the thin lines will be uniform and all the thick ones likewise. If two pens are available, of course, one may be set for the thin and the other for the thick lines. If there are any curves it is best to put them in first, as it is much easier
to join a straight line on to a curved one than to do the opposite.

In using the compasses for inking in (or for pencilling), keep the legs as nearly square to the paper as possible by setting the knee-joints (see fig. 32). By this means a firm solid line will be obtained, whereas

![Fig. 33](image)

if the legs are allowed to remain at an angle, as shown in fig. 33, a ragged line will be the result, and the hole in the centre will get rimered out to a large size. To prevent the needle leg from boring through the paper some draughtsmen use horn centres, which are attached to the paper by three small needle-points; these, in their turn, deface the paper, and it is more satisfactory to dispense with their use when possible. If larger circles are required than can be struck by 6-inch com-
passes, it is better to use a pair of trammels than a lengthening bar, as the trammels are much firmer and act more squarely to their work.

Now a word as to the ink. Although there are many liquid inks in the market, and some of them appear to be of very good quality, it is still a very general custom to rub up the ink, as required, from Indian ink sticks. These are mostly of a hexagonal form, are about $4\frac{1}{2}$ inches long, and the price is about five shillings per stick. It is often a fault with beginners that they do not get their ink black enough, possibly on account of its being a very tedious process to rub Indian ink until it is really black; but an infallible guide to its blackness is this: try a pretty thick line on a piece of paper and let it thoroughly dry, and if the ink is really black the line will glisten or shine in the light; if it does not present this appearance, go on rubbing. The best pans for ink are of white metal, about three inches diameter, with air-tight lids. Sometimes when using ink on tracing paper, tracing cloth, &c., there is a difficulty in making it flow well. To overcome this various means are resorted to, such as putting a little soap or ox-gall in the ink, or, instead of that, rubbing the paper or cloth over with a clean rag upon which has been placed some powdered chalk, and this last method is much the cleanest and best in our estimation.

If a drawing is to be coloured after being inked in, it is advisable to put into the Indian ink (when rubbing it up) some "indelible water." This has the effect of fixing the ink permanently, and allowing repeated washes of colour to be passed over it without disturbing it in the least. It is a good plan to leave all dimension lines and centre lines until all the colouring is done, as by this means all risk of blurring them will be avoided.
Should it become necessary to erase an ink line, which we hope will not be the case, proceed as follows: scrape the line carefully out with a sharp knife, and rub lightly with ink-eraser or indiarubber; then take a brush of clean water and go over the erased line, and let the water remain on a short time, then blot up with clean blotting-paper; now take a highly glazed piece of clean note or other paper and place over the line, and rub briskly on the back with a burnisher, and for the latter, if no better one is to hand, a capital one can be made out of the handle of a toothbrush. This process will partly restore the surface of the paper, but a drawing on which there has been much scratching out is
never satisfactory, as the erased surfaces all show up sooner or later.

Having inked our drawing in, let us consider a few points in relation to the sectioning and shading of it. First as regards sectioning—that is, colouring those portions of the work which are shown cut through—there are two methods usually employed and perhaps in equal favour. One is to cover the surface with solid

![Fig. 35](image)

colour, and when this is adopted it is best to leave a line of light along the top and left-hand edges, especially where several sections come closely together, as this helps to show the pieces more distinctly (see fig. 34). The other method of sectioning is to streak the sections with the brush, altering the angle of the streaks for
adjacent pieces, but taking care to have all the sections of the same piece of metal or other substance streaked in the same direction (see fig. 35). The streaks may vary in thickness with the size of the piece, say from lines about $\frac{1}{3}\frac{1}{2}$ inch wide to those of 4 inch; these should all be done with the brush, and, if possible, at one stroke for each mark, and the angles should all be about 45°. A little practice at this will enable the draughtsman to section a drawing very expeditiously, and when well done the result is very satisfactory. Different offices have different rules and fancies for the right colours to use for various sections, but the learner may practise with the following, and afterwards will have no difficulty in adapting himself to any others:

<table>
<thead>
<tr>
<th>Material</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron</td>
<td>Neutral tint or Payne's grey</td>
</tr>
<tr>
<td>Wrought iron</td>
<td>Prussian blue</td>
</tr>
<tr>
<td>Steel</td>
<td>Purple</td>
</tr>
<tr>
<td>Copper</td>
<td>Indian red</td>
</tr>
<tr>
<td>Brass</td>
<td>Indian yellow</td>
</tr>
<tr>
<td>Wood</td>
<td>Burnt sienna, varied with sepia or burnt umber</td>
</tr>
<tr>
<td>Brickwork</td>
<td>Crimson lake</td>
</tr>
<tr>
<td>Concrete</td>
<td>Dots of colours stippled on with point of brush, say sepia, lake, and Indian yellow, each colour put on separately</td>
</tr>
<tr>
<td>Earth</td>
<td>Sepia</td>
</tr>
</tbody>
</table>

We will now consider the shading and tinting of surfaces not in section, and note that when a drawing is to be properly coloured up and shaded the ink lines must not be made thick and thin, but all of a uniform fineness; and with regard to rounded surfaces, such as piston-rods, &c., there are two methods of working them up. The first, and the best when well
done, is what may be termed the softening-off process. Suppose we wish to round up a rod as in fig. 36, we provide ourselves with two brushes; one for the colour and another for clean water. With the colour brush go down the left-hand edge, just touching the line, and before the colour is quite set take the water brush and pass it down the right-hand edge of the colour just laid on, and this will blend the colour off into the white paper; then with the water brush make a stroke down the rod, say nearly on the centre line, and before it is quite dry pass the colour brush down the right-hand edge of the water mark, and carry the colour right over to the right side of the rod; then squeeze the water brush nearly dry and pass it rapidly down the right-hand edge of the rod to take up some of the colour and to give the reflected light. Then leave the colour to dry thoroughly before touching it again, and if the colour is not strong enough repeat the process; but work as rapidly as possible so as not to rub up the original colour. The beginner may be much disgusted with the results of his first few efforts in this direction, but if he will only continue practising he will soon be able to produce good work. If after all care there should be a light place or two in the work, when it is quite dry stipple a little light colour on with the brush nearly dry, and if there should be a dark speck or two they can be toned down with a brush dipped in clean water, with the aid of a clean piece of blotting-paper.

The other system of shading only requires a steady
hand and a good eye for a straight line, and is much in favour with those who have a difficulty with the softening-off method. Proceed as follows: Mix a pretty dark wash of Indian ink and two washes of Prussian blue, one pale, the other medium strength. With the Indian ink go down the left-hand edge of the rod, and also down the middle of the right-hand portion, as in fig. 37, No. 1.

After this is thoroughly dry take the medium blue wash and go over the Indian ink on the left and carry it a little farther on to the rod; then commence just outside the other Indian ink line, and pass over it to about the same distance the other side (see fig. 37, No. 2); and, lastly, after this is dry, take the lightest wash, and go over the others as shown in fig. 37, No. 3.

Care must be taken to let the washes thoroughly
dry before giving the next coat; and, when well done, the result is remarkably good considering the simple means employed. In the case we have been considering we have assumed the piece to be of wrought iron, but supposing it had been of brass we should have followed the same method, only using burnt sienna for the first dark marks and afterwards washes of Indian yellow.

In the case of the softening-off process applied to wrought iron rods, more apparent solidity can be imparted by first of all laying in a shadow of Indian ink, as in the second process, only passing the water brush down the edges to soften them off, and when this is dry proceed with the colour as described. If possible, keep a separate brush for Indian ink, as it is very difficult to get it thoroughly out of a brush when once used for it.

In colouring, the main thing is to get a good effect without labouring at it, as there is a much more brilliant effect about a drawing on which the colour has been laid on with a firm, steady hand once for all than on one which has been highly stippled and hatched, and otherwise laboured over.

In laying on flat washes, if the surfaces are small proceed to lay the tint on at once, after testing its suitability first on a piece of scrap paper. If the surface to be coloured is large, damp it all over with a large brush and clean water—avoiding going over the outline, however—and when the water has disappeared from the paper proceed to lay on the wash, commencing at the top left-hand portion and gradually working across and downwards, endeavouring at the same time not to leave one part of the wash standing longer than another. If you have a surplus of colour at the lower part of the surface squeeze the brush out and lightly take it up, but do not on any account disturb the tint laid on until
after it is thoroughly dry. Slope the board slightly towards you and use large brushes, and always run the risk of having a lot of colour left over in the palette rather than of finding yourself short in the middle of the work.

As it is often necessary to show what are termed "breaks" in a drawing, we give a few instances of some which occur pretty frequently.

Figs. 38 and 39 show breaks in round rods; fig. 40 shows a break in a square bar; fig. 41, one in a flat bar; fig. 42, an angle iron break; fig. 43, a rail or H-iron break; fig. 44, a break in a pipe; fig. 45, the method of passing from an outside view of a pipe to a sectional view; fig. 46, a break in a wooden beam; and
fig. 47, a break in a wooden flooring, to show the joists underneath.

The sectional parts may be coloured suitably, or sectioned with lines, harmonising with the rest of the drawing, and note that all the horizontal lines show the true thickness of the material, even in the breaks, only those in a vertical direction being put in freehand.

If there are any dimensions to be put on the drawing, it is best to put them and the dimension and centre lines on after all the colouring is done, and the way in which this part of the work is done either adds to or detracts from the appearance of a drawing. Many a decent drawing is entirely spoiled by bad writing, and by the figures being put on in a careless and slovenly manner. In placing the dimensions, it is necessary to look ahead and space them out nicely, so that there will be room for all, and not have any of them fouling each other. The dimension lines may be put in with blue or red colour, prussian blue or scarlet lake, and they may be full or dotted, and the figures should be made a fair size and be round and legible. The ticks at the ends of the lines should be made neatly, and join right up to the lines the dimensions are taken from, and as many dimensions as possible should be placed in line with
each other, for the sake of neatness and also because in that form they are easier to add up and to check with the overall dimensions (see fig. 48).

To make the drawing complete, it will be necessary to put a suitable title to it, and to add the scale or scales and the date; the title should be as brief as possible, and yet indicate clearly what is drawn. It may be written in plain round hand, printed by hand, or stencilled, and should be so placed that it can be readily seen if the drawings are kept in drawers. With regard to border lines and corners, such things are generally discountenanced in a practical engineer's drawing office, but they are much in favour in other offices, such as civil engineers, architects, &c., and if they are desired the neater and plainer they are the better. (See fig. 49 for an example.)

To repeat a few hints in a concise form. If the drawing is a new one, and is to be shaded and coloured, ink in all lines with ink mixed with indelible water, then clean with soft rubber, or, better still, with bread. Next shade and colour, and, lastly, add dimension and centre lines, and figures and notes.

If an old drawing is to be inked in and coloured up, ink in all lines, dimensions, and ticks that are to be put in with black ink, then clean down, after which do the colouring required, and, lastly, put in red and blue dimension and centre lines.
CHAPTER III

FURTHER HINTS ON USE OF INSTRUMENTS

Use of set-squares. Anyone who can handle a pair of set-squares properly will never feel the want of a parallel ruler, and by their aid lines can be drawn parallel with each other, or at right angles with each other. To draw lines parallel with each other set one square to the first line, then place the other set-square up against it, as shown in fig. 50, and gradually slide one square against the other to the required positions of the lines, say A, B, C. At first a little difficulty may be apparent in trying to hold both squares firmly with the left hand whilst the lines are drawn with the right, but this will soon disappear with practice.

To draw a line at right angles to another by set-squares, let AB (fig. 51) be the line, and place the hypotenuse of either square parallel with the line, and then bring up the other set-square against one of its other sides; hold the second square down firmly and
turn the first one round a quarter-turn, as shown by
dotted lines; then the hypotenuse of that square will
be at right angles
to its first position,
and by its aid a line
can be drawn at right
angles to A B, such
as C D. The only
point to be observed
is that the angle of
the square which is
rotated must be a
right angle. We are
supposing the squares
used to be those
ordinarily used, viz.
45° and 60°, and we
will point out one
or two more use-
ful purposes which these squares will serve. To
draw the plan of a hexagonal figure, such as a nut,
first determine whether you wish to show two of the
sides vertical or horizontal. Suppose we assume them
to be the latter. Strike a circle equal to the diameter
of the nut over the flats;
then with the tee square
draw two horizontal lines
tangential to the top and
bottom of the circle; then
place the 60° set-square
against the tee square,
and draw two more of the
sides, and then turn the
60° set-square over and
do the last two sides (see fig. 52).
If two edges are required to stand vertically, draw the vertical lines by means of the vertical side of the set-square, and the angular lines by means of the same set-square, with the 30° side set against the tee square instead of the 60°.

Screws and toothed wheels, &c. A knowledge of the proper method of delineating a screw of any diameter and pitch will be found very useful, although in practical work screws are generally shown in a very conventional manner. Suppose, for example, we had to draw a single-threaded screw 1\frac{1}{8} inches diameter, 8 inch pitch, right-handed square thread, the screw properly drawn would appear as shown in fig. 53, but to

save time it would probably be shown as in fig. 54. It will be observed that the pitch in both cases is marked off quite correctly, but in the second case the points of the threads are joined by straight lines; by this means much time is saved, and the drawing is just as good for all practical purposes. In marking off the threads, note that in all cases the point C should be exactly between A and B. Supposing it was a double-threaded screw we were showing, with the same strength of thread and the same diameter, it would appear as shown in fig. 55, and the pitch in this case would be 8 inch, as the pitch is always the distance between the edges of the same thread.
The threads on small bolts and studs are seldom shown in detail, but as in fig. 56.

In this example thick black lines are drawn to represent the threaded part of the bolt, and no detail or particulars of the thread are given; it would, therefore, be understood to be a standard \(\frac{1}{4} \)-inch Whitworth thread, and in most offices and shops Whitworth’s threads are adopted as a standard, and a table of them containing all sizes generally used is posted up for reference. Besides giving the number of threads per inch, the table generally gives diameters of heads and nuts,
thickness of ditto, and the area in square inches at the bottom of the thread; the latter item is most useful and important in calculating out the number of bolts required to hold the cover on a steam valve, cylinder, &c., as of course the bolt is no stronger than its weakest part, and that is at the bottom of the thread.

For certain classes of work, especially brass fittings, fine threads are used, and the most general are twelve and sixteen threads per inch. When taking particulars of machinery, it is often necessary to ascertain the size and number of threads per inch of various pieces of screwing, and when there is a clear inch length to work in it is easy enough to get it. Place the rule against the screw and count the threads between the inch marks—that is, the spaces—for observe there is always one more point between the inch marks than there are spaces (see fig. 57).

If there is not a complete inch to measure, the best plan, where possible, is to borrow two or three screwing tools and try them on the threads thus (fig. 58).

By this means the number of threads will be quickly and accurately ascertained. Of course the diameter can be obtained on outside threads by taking a measurement over the threads with a pair of outside callipers. To measure an inside thread is more difficult, but the piece which screws into it can generally be got at, and should be measured in preference.

Nearly all threads are spoken of as such a diameter, and this is their real diameter over the threads; but an exception to this rule obtains in gas threads, which leads occasionally to much confusion. These threads are called by the inside diameter of the pipe on which the
thread is screwed outside. Thus, a thread marked \(\frac{3}{4} \)-inch gas would be understood to mean \(1 \frac{1}{6} \) inches in diameter, and would have 14-threads per inch, and 1-inch gas would be \(1 \frac{5}{8} \) inches, with 11 threads per inch. So it is necessary to bear this in mind.

In drawing toothed wheels, pinions, &c., it is sometimes necessary to show the form of the teeth fully; generally, however, it is sufficient to indicate by a diagram and notes what is required. Suppose, for instance, we were showing a train of wheels for a crane, we should do it in the manner shown in fig. 59. In most large works there is a collection of patterns of toothed wheels, particulars of which are tabulated and kept for reference, and of course it is the draughtsman's duty to bring in these patterns whenever he can, to avoid the expense of making new ones.
Volumes have been written upon toothed wheels and the various shapes of the teeth; but unless a man is going to take up that class of work as a speciality he need not go so deeply into the subject. He should, however, have clear ideas of the meaning of the pitch diameter of the wheel, the pitch of the teeth, and the strength of a tooth necessary to transmit a certain amount of work. The circles in fig. 59 are the pitch diameters of the wheels and pinions, and should always be shown in contact, and the distance between the centres of any two wheels geared together is half the sum of their pitch diameters.

The pitch of the teeth is the distance from the edge of one tooth to the corresponding edge of the next tooth measured on the pitch line of the wheel (see fig. 60), and an approximate proportion of tooth and clearance for ordinary drawing is as follows: divide the pitch into 15 parts, then take 8 for the space and 7 for the tooth; also make the tooth extend 5 parts beyond the pitch line and 6 parts below it, as shown.

Mitre and bevel wheels are generally shown in more
or less of a diagram form (see fig. 61). In mitres both wheels, of course, are of the same diameter; but in the case of bevels the diameters may vary to almost any extent.

If the wheels are to be shown fully in detail, the draughtsman must make a special study of their forms from books on the subject, such as Unwin's "Elements of Machine Design" or Goodeve's "Elements of Mechanism."
CHAPTER IV

NOTES ON SKETCHING

The draughtsman is often called upon to sketch machinery, and to obtain particulars of land and buildings situated, perhaps, many miles away. When this is the case it is very important that all necessary particulars should be obtained, and also that they should be accurate, so that a second journey is not entailed to obtain missing dimensions or to verify others.

For measuring machinery the following things are required: a 2-foot rule, a tape (useful for measuring large circumferences), a pair of inside and a pair of outside callipers, a plumb-line (if no proper one is to hand a very good one can be improvised by the aid of a piece of thread with an iron nut tied to the end); a 5-foot or 10-foot staff is also very useful sometimes, but these are awkward things to take a long way from home, and they can often be obtained on the ground; if not, a lath of some sort can be obtained, and long lengths can be marked upon that and measured off by the rule. Lastly, a note- or sketch-book is required, and a good size for this is about 7 inches by 5 inches. If the draughtsman is pretty fair at freehand sketching a book with plain leaves may be used, but if he has any difficulty in this respect one ruled in small squares in faint
grey lines is very useful in helping him to keep his lines square with the paper.

Before commencing to sketch the work it should be well examined and the mind made up as to what views will be required, outside and sectional, to properly show the work. Then these views should be sketched as neatly as may be freehand, and the positions of all dimensions shown by lines and ticks; by this means there will be less likelihood of missing requisite dimensions. Having prepared the sketch thus, proceed to measure up the parts and fill in the dimensions. If there is a string of dimensions in a row, when these are obtained in detail, take an overall dimension, and check the figures off at the time; by this means errors will often be eliminated on the ground, and a deal of after trouble will be saved. Suppose, for example, a cylinder was being measured up as shown in fig. 62.

We should measure the overall dimension from face to face of cylinder, and then the detailed dimensions from face of cylinder to valve chest, &c., and if we found on adding up the latter, which could be done in a few moments, that they agree with the overall dimension, we should feel quite certain that our work was correct; and similarly, if we found that the detailed dimensions across the port face agreed with the dimension across the inside of the steam chest, we should feel easy about those. Little things which are too small...
on the sketch to be properly dimensioned can be drawn out a little larger on another page, and lettered or numbered for reference, such as “detail at A,” and the reference letter can be put on the general view in this way: “A, see detail.” In sketching leave nothing to memory, but book everything down carefully and exactly, for it often occurs that the particulars are not used for some time after they are obtained, and then it is found that there is nothing to rely upon except the particulars noted down.

NOTES ON DESIGNING

In the case of new work being designed, a preliminary sketch or drawing is often made upon “scheming paper,” which latter is a cheap thin kind of tracing paper with somewhat rough surface, to enable it to take the pencil freely; the advantage of using such paper is that it can be placed over other drawings or tracings, so that any desired parts of standard work, &c., may be traced directly instead of having to be drawn by scale. When the design is approved of, it is then drawn properly to scale upon mounted or other drawing paper. A general arrangement of the work, engine, machine, or whatever it is, is drawn upon one sheet to a suitable scale, perhaps 1 inch or 1½ inches to 1 foot, and the details are drawn out on other sheets, the wrought-iron work on one, the castings on another; so that tracings can be taken off each, and sent to the smith’s shop and the pattern shop respectively. The details should be drawn as large as convenient, small and intricate parts being shown full size, simpler pieces to 3-inch scale, or half full size. The edges of all the machined work (in the detailed drawings and tracings) should be coloured with red or some other tint, so that
the shop foremen can tell at a glance where metal must be left on the castings and forgings to clean up to the finished sizes. These red lines may be run round the edges of the work either with a fine brush or with a drawing pen, and a note is added to say "machine surfaces tinted red." Before any drawings or tracings go into the shops, all the dimensions, &c., are checked by the chief draughtsman, or by some leading man in the drawing office.

In designing machinery it is necessary that the draughtsman should understand the relative strengths of the materials which he has to use, and the various purposes to which the materials should be applied. Thus, wrought iron is rather stronger in tension than in compression; therefore, if used for a girder the top or compression flange would be made rather thicker than the bottom one. Again, wrought iron being easily forged, it is used for all sorts of rods, levers, axles, &c. Steel, both forged and cast, is better in compression than in tension; but in both respects it is stronger than wrought iron, and is therefore largely used where great strength combined with lightness is required. It is used for rails, boilers, girders, shafts, connecting and coupling rods, &c.; in its forged or rolled forms, and in the form of castings for wheels, brackets, machine frames, &c. Brass is a comparatively soft metal, but being non-corrodible is used very much where likely to come into contact with water, such as for valve casings, valves, seatings, &c.; it is used, also, in many bearings for axles and shafting, as it and iron or steel run well together if properly lubricated, whereas wrought iron will not run with wrought iron or steel with steel. Phosphor bronze is now largely used instead of brass for bearings which are subjected to heavy loads, also for slide valves, &c. In cases where it is necessary for strength to have steel and
steel running together, a thin lining of white metal must be sweated on one piece, and be renewed as it wears away. Cast iron is much more favourable in compression than in tension, its latter quality being very low and not to be much relied on; but, being cheap, it is generally used where weight is required and where its compressive strength is useful, such as in heavy bed plates for engines, tools, &c. In designing large castings, several points require attention; one is to make all the metal as uniform in thickness as possible—that is, do not change a thickness of, say, 2 inches to \(\frac{1}{8} \) inch, but where a change of thickness is unavoidable put in a good fillet in the corners and make the metal taper gradually, otherwise the casting will most likely crack in the cooling. Suppose, for example, a cast-iron girder is in question (see fig. 63). On account of the metal’s superior qualities in compression, the top flange is made much smaller and thinner than the bottom one, but

![Fig. 63](image1)

![Fig. 64](image2)

large fillets should be put in at A, A, and the metal should be tapered in the web as shown at B, B. Also do not make small niggling projections on large castings, as they are liable to breakage, but rather
make suitable facings on the castings, and bolt such things as small brackets to them (see fig. 64). Also in small castings, endeavour to make them as simple as possible, so that the "core box," if any, will not be too complicated, and there will not be a number of "loose pieces" on the pattern to bother the pattern-maker. This is a point where a little experience in the pattern shop stands a draughtsman in good stead.

FACTOR OF SAFETY

This is a very familiar term to a draughtsman, he being frequently asked as to some piece of machinery which he is designing, what factor of safety has it? The term means this, that supposing you are designing a boiler to carry 150 lbs. steam pressure per square inch, you would make it so that it would require five times that pressure, or 750 lbs. per square inch, to burst it, in which case you would say that the boiler had a factor of safety of five. This excess of strength has been found necessary from experience to cover such contingencies as unexpected failure of material, imperfect workmanship, and, above all, to make allowance for the corrosion and consequent weakening of the plates from use and age. In the case of a boiler, it would be expected to last, say, about thirty years, although, probably, before the end of that time the working pressure of 150 lbs. might have to be somewhat reduced.

Factors of safety vary according to the nature of the work and the shocks which may come upon it; thus, in the case of a girder carrying a dead load—that is, one which is constant—a factor of three times might be considered sufficient; whilst, on the other hand, in the case of a crane liable to jerks and sudden strains, a factor of ten times might not be considered too liberal.
CHAPTER V
LEVELLING AND SURVEYING

The principal instruments ordinarily used in surveying and levelling are the following:

The theodolite, of which instrument there are several varieties, the most perfect of them being perhaps that called the transit theodolite.

The level. There are also several varieties of this instrument, viz., the Dumpy level, Troughton's level, and others. Both the above instruments are expensive, an ordinary theodolite costing about 25l. or 30l., and a level, say, from 15l. to 20l. They should, therefore, only be purchased after carefully considering the work they are likely to be required for, and on the advice of someone who has had a good deal of practical experience with them. For a very complete and useful description of these instruments see Stanley's "Surveying Instruments."

The cross-staff. This is a useful little instrument for setting off right angles, and angles of 45 deg., from any point in a line. It is a small hollow metal box, having eight sides; in each of these there are slots, two of which have wires fitted to them to aid in setting the instrument. It is placed upon a short staff (see fig. 65), fixed firmly in the ground at the point from which the right angle is required. A pole is then placed upon the base line some distance away, and the cross-staff adjusted so that one of the wires intersects it. A sight is then taken through the slots at right angles to this whilst an assistant places a pole until it is intersected by the second wire. Of course, the result is only
approximately correct, and the cross-staff should therefore not be used where great accuracy is required.

The levelling staff. This is generally of mahogany, and in length varies from about 14 feet to 18 feet. For convenience of handling and carriage, it is usually made of a telescopic form in about three pieces, to slide one within the other. The staff is marked as plainly as possible in feet and decimals of a foot, each foot being divided into ten parts, and each part subdivided into ten again.

The chain. The length of this is \(\frac{1}{80}\) of a mile, or 66 feet. It is generally made of stout iron wire with one long and three short rings alternately, and is divided into 100 links, every ten of these being marked by a piece of brass. With constant use the chain is liable to stretch; it must, therefore, be regularly examined and compared with some length permanently fixed on a floor, or with a chain specially kept for a standard and not otherwise used. Ten iron arrows always accompany the chain, to be used for marking the points on the ground from which the measurements are taken; two men usually handle the chain, and the leader takes all the arrows at first and keeps planting them at each fresh measurement, and as the second man moves forward he takes them up until they all come into his possession, at which
time the line measured will be ten chains long. When this has taken place he hands them all to the first man again, and they proceed as before.

Surveying may be defined as the art of obtaining the exact shape of a piece of land, and may vary from a simple matter like the measuring of a plot of land suitable for the site of a humble cottage to the gigantic operation of measuring the whole of the British Isles, called the ordnance survey, which has been going on for years and is still in progress.

The scales upon which the ordnance surveys are made are as follows:

Towns of 4,000 inhabitants or over, $\frac{1}{500} = 126.72$ inches to 1 mile, or $41\frac{2}{3}$ feet to 1 inch.

Parishes in cultivated districts, $\frac{1}{2800} = 25.344$ inches to 1 mile, or 1 square inch to 1 acre.

Counties, 6 inches to 1 mile.

The kingdom, 1 inch to 1 mile.

Levelling is a necessary accompaniment to surveying, as, besides requiring to know the shape of a piece of land in plan, we often want to know its level, to find if it is above or below certain other points, and to see if any excavation will be required or if any embankments will have to be made, as in the case of surveying for a line of railway.

The principle of surveying consists in laying out as long a straight line as possible on the ground to be surveyed, and upon this line constructing one or more triangles, and from the sides of these triangles taking various offsets or measurements to the boundary of the land. These lines and triangles are carefully noted in a book on the ground, with all necessary dimensions, and are afterwards plotted or drawn down to a scale on paper, and when the boundaries, buildings, and fences are correctly located, the triangles, of course, can be rubbed out if required.
The highest class of surveying is done with the theodolite, a most perfect and beautiful instrument, and by the aid of which the utmost accuracy may be attained. It is a matter of time and care to set up and adjust the instrument properly. It is, therefore, generally used on important work, and is fixed at points from which a number of readings can be taken at one setting. By its aid angles can be read off, both vertically and horizontally.

Ordinary surveying may be done with a chain or a tape, and a cross-staff or large square for laying off lines at right angles to others. It is handy to remember that if the sides of a square are laid off in the proportion of 3, 4, and 5, that they give us a right-angled triangle, so that by the aid of a tape or chain alone we can always set off a right angle. Thus, suppose we wish to lay off a right angle to A, B, at point C, fig. 72. On either side of point C mark off a distance equal to 3 yards or 3 feet at D, and from C set off also a length equal to 4 yards or feet at E, and if length between D and E equals 5 yards or feet, the angle DCE will be a right angle. Of course this is founded on the fact of the hypotenuse of a right-angled triangle being equal to the square root of the sum of the squares of its two sides. Thus, $4 \times 4 + 3 \times 3 = 25$, and the square root of $25 = 5$.

The branches of study most advisable for
those entering on this class of work are geometry, plane and solid, euclid, mensuration, logarithms, decimal fractions, trigonometry, and algebra; also practise drawing plans from one's own measurements, and making copies of good examples, paying special attention to the style, colouring, &c., of the latter, and obtain as much practical acquaintance as possible with the instruments out of doors by joining some class in surveying, such as are now held in large towns like London, Manchester, and others. If it is not always convenient to go out with the level or theodolite, take a tape or chain, and, with a friend to help, measure up any field or odd piece of land, with any buildings or what not upon them, and try to plot the result down on paper at home to some suitable scale, such as 2 chains to the inch, and you will soon find yourself progressing in the right direction.

Before leaving this subject we may refer briefly to hydrography, or map drawing. The hydrographer proper is concerned chiefly with maps of the coast-lines, islands, and shoals, which are made for the benefit of mariners and others, the office being a Government one under control of the Admiralty. Ordinary map drawing may be all in black lines, with the hills, &c., shaded in Indian ink with a brush or by a hand-pen so graduated as to show the various heights and hollows of the ground, or it may be coloured to represent the various parts naturally, in which case the man who has taste and a knowledge of landscape painting will have a great advantage. Neat printing and bordering are especially necessary in this work.

Estimating

This is a class of work which a draughtsman is often called upon to perform, and, besides requiring great care, puts his arithmetical knowledge to the test
also—one estimate perhaps demanding the use of mensuration, practice, compound addition, and interest.

If an estimate were required for the cost of some machinery not yet made, all the quantities of the various metals would have to be calculated out from the drawings by first obtaining their cubic contents, and then multiplying each in turn by the weight per cubic inch or foot for each particular metal. Then these weights would be taken at so much a cwt. or ton, according to whether they were rough or machined.

Additions are often made to estimates, such as the following: Cost of erection, office charges on labour, and extra for unforeseen contingencies.

In some cases the draughtsman completes the estimate, but in others he gets out the quantities only, and the prices are put on by another department.

We herewith give a sample estimate to show the general form which is used. The various items and prices, however, are only assumed, the latter varying largely with different firms and in different districts. (See p. 55.)

In estimating for buildings there are innumerable details to be considered, such as excavation, concrete, brickwork, roofing, joiners', plumbers', and plasterers' work, and there are special methods of measuring many of the details, which can be obtained from Hurst's "Pocket-book" and other works.

INDICATING STEAM AND OTHER ENGINES

A draughtsman is often called upon to perform the above work; it is, therefore, advisable to be in some measure prepared for it. Engines are indicated for two reasons: either to obtain the horse-power which they are developing, or to enable one to judge if the valve is set and acting properly; the latter fact can be ascertained at once by examining an indicator-diagram, as it shows
ESTIMATE

THE GENERAL ENGINEERING COMPANY, LIMITED

Estimated Cost of 14-inch Accumulator

<table>
<thead>
<tr>
<th>Time</th>
<th>Smith's Machine</th>
<th>Fitting</th>
<th>Rate</th>
<th>Amnt.</th>
<th>Particulars</th>
<th>Cast Iron</th>
<th>Wrought Iron</th>
<th>Gun Metal</th>
<th>Stores</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cylinder, ram, head, &c.</td>
<td>9 Tons</td>
<td>0 Tons</td>
<td>120</td>
<td>...</td>
<td>£17</td>
<td>161 10 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brass gland, bushes, &c.</td>
<td>0 cwts.</td>
<td>0 cwts.</td>
<td>46</td>
<td>1</td>
<td>18 8 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Timber, 130 cubic feet</td>
<td>0 qrs.</td>
<td>0 qrs.</td>
<td>25.10d.</td>
<td>24 10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weight casing</td>
<td>0 lbs.</td>
<td>0 lbs.</td>
<td>25 6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bolts</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Valve</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 yrs. 3 ins. piping and bends</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brickwork, 13 cubic yards</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10 8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concrete, 20 cubic yards</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Erecting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Office charges, 15 per cent. on labour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22 10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contingencies, 10 per cent.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30 2 7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>331 8 11</td>
<td>4</td>
</tr>
</tbody>
</table>
whether the "lead" is correct, whether the "cut off" is the right percentage of the stroke, and whether the exhaust closes at the proper point.

To ascertain the horse-power of, say, a two-cylinder engine, diagrams should be taken simultaneously from both ends of a cylinder, then the horse-power of each diagram should be worked out, the two added together, and that total multiplied by two for the two cylinders. The horse-power of one diagram would be \(\frac{A \times P \times R \times S}{33,000} \),

where \(A \) = area of piston in square inches,
\(P \) = mean pressure of steam in lbs. per sq. in.,
\(R \) = number of revolutions per minute,
\(S \) = stroke in feet.

The mean pressure of the steam in lbs. per square inch in the cylinder is obtained by dividing the diagram into ten parts, and measuring the ordinates with the scale of the diagram, then adding all these together and dividing by ten. See fig. 67, showing a diagram from an actual engine, with the ordinates, mean pressure, and the action of the steam noted.
To find the exact point of "cut off" in a diagram proceed as follows (see fig. 68):

Mark off to the scale of the diagram 14.7 lbs. below the atmospheric line to find the absolute vacuum line,

then draw a vertical line, A B, 1/4th of the length of the diagram away from it. Draw any line A C, and from C let fall a perpendicular to cut the expansion curve as at D; draw a horizontal line from D to cut line A C in E, and from E draw a vertical line to cut a horizontal line passing along the highest part of the diagram in F; then F will be the point of "cut off."

There are various instruments used for indicating steam, gas, and other engines, the one most generally known perhaps being Richards's indicator; this is a very good instrument for engines running at moderate speeds, but more modern indicators have been brought out to suit the higher speeds of the present day, such as the Thompson, the Crosby, and the Tabor. The author has had pretty extensive experience in the use of the last named, and found it give good results on steam and gas engines.
CHAPTER VI

BRANCHES OF SCIENTIFIC KNOWLEDGE ADVISABLE TO BE STUDIED BY DRAUGHTSMEN

For those likely to be engaged upon general engineering work, in the first place they cannot be too well up in arithmetic, and they should pay special attention to decimals and decimal fractions, as nearly all calculations are worked by these rules, as we will more particularly point out presently. If they are acquainted with algebra so much the better; but this is not absolutely necessary, as when there are extra abstruse calculations to be made they are generally referred to one or two men who may happen to be well up in that line—in fact, some offices keep a calculator, who is expected to solve problems as they arise. It does not always appear that the best theoretical men make the best draughtsmen. Many of the best and most useful men have been obtained by taking into the office intelligent young fellows who have served their time practically in the shops, including experience in the pattern shop if possible, and who have studied in the evenings at a good technical school or mechanics' institution to perfect themselves in arithmetic, drawing, and different branches of science, especially mechanics and steam, and in drawing plane and solid geometry development of surfaces, and projection of shadows. With regard to solid geometry, we do not mean to say that a man need know as much even as is expected of him to pass a second-grade advanced examination, but
that he should work more on the lines of what is called orthographic projection—that is, take some simple geometrical figure, such as a cube or a hexagonal pyramid, or a mechanical figure, such as a nut or a wheel, and draw it in all possible positions, as shown in fig. 69.

By mastering the principles involved in the above, and similar examples, the student will render himself able to project any work in any mechanical or other drawing that may be given him to do.

The development of surfaces comes in very useful sometimes in boiler work, when it is requisite to know the proper size and shape of a plate in the flat which will work up to a certain curved form, such as plate A in the hemispherical end of a boiler (see fig. 70), or in a ship's buoy, &c.

Projection of shadows is a very useful study, as it enables one to correctly shade up a finished drawing, but it is a study much neglected as a rule, and the consequence is that when a drawing has to be shaded up it is often done in a very unsatisfactory way.
Even if only a little shading is required, that little looks much better when put on in the right way, and the man who has studied the subject can often tell at a glance how and where to place the shadows without troubling to mark them out, first, geometrically. For instance, if we wish to shade up a round rod, by drawing a circle to represent a plan of the rod and two lines at an angle of 45°, one to the centre and one tangential to the rod, we find at once the position of the highest light and the deepest shade upon the rod, see fig. 71, and work accordingly.

Also, suppose we wish to cast the shadow of a blocking course, &c., on the elevation of a house. By making a profile view of the moulding, and drawing lines at 45° from each projection on to the next face below, we at once find the depth of the shadow (see fig. 72).

Referring to the sciences which a draughtsman should study, we may safely say that mechanics, both theoretical and applied, is one of the most important of them. A man is constantly confronted with problems in this science, whether he be designing engines, cranes, tools, or girders. If, for instance, he is designing a crane to lift a certain load, say, a 10-ton hand crane, he must be able to calculate the transverse strain on the crane post, the tension on the tie rods, and the compression upon the jib. He must also be able to so arrange the gearing that the power applied, say, by four men at the handles exerting 15 lbs. each, will lift the required load of 10 tons.

The science of steam is also extremely useful, especially to men engaged upon engine and boiler work. If a man were engaged in designing a compound engine he should be prepared to say what the steam pressures would be at the end of the stroke in the high pressure cylinder; in the receiver, if there was one, between the
high-pressure and the low-pressure cylinders; and on the entrance to and exit from the low-pressure cylinder, and he should be able to construct an approximately correct indicator-diagram for the two cylinders. Also he would require to so proportion the cylinders that they should, as nearly as possible, each perform the same amount of work.

Last, but not least, returning to the question of calculations, nearly all these can be done by decimals; for instance, it is often necessary to work out the weight of machinery, boilers, &c., from drawings, in which case we should proceed to find the cubic contents of the work as follows: Take the dimensions of each piece, or portion of a piece, if necessary, in feet and inches, and then turn them all into inches and decimals of an inch by means of a table of decimal equivalents; then by multiplying these together we should obtain the number of cubic inches in the piece. Suppose the article is cast iron. We find from the table in Molesworth's pocket-book that this weighs 26 lb. per cubic inch;
we therefore multiply the number of cubic inches by 0.26, and thus get the weight in lbs. If necessary we then divide the weight in lbs. by 2,240, 112, and 28 to turn it into tons, cwt., qrs., and lbs. And as there is a different factor for the weight of a cubic inch of various materials, it is necessary to keep the cubic inches of cast iron separate from those of the wrought iron, and these in their turn from the steel or brass. The multiplier for wrought iron would be 0.28 lb. per cubic inch, for steel 0.288, and for brass about 0.3.

We may have to find the number of square feet of plate in a boiler, in which case we should take our lengths, circumferences, &c., in feet and inches, turn all the dimensions into feet and decimals of a foot; then multiply them together and obtain the answer in square feet and decimals of a square foot. Supposing, then, we had to give the weight of these plates, we should look in the table for the thickness of the plate we were using, and if it was $\frac{1}{2}$-inch steel plate, say, the multiplier would be 20.8 lbs. per square foot. We should, therefore, multiply this factor by the number of square feet (if they were all $\frac{1}{2}$-inch plates), and thus obtain the weight. If the shell plates differed in thickness from the flue or end plates, we should find the number of square feet of each thickness separately, and multiply each in turn by its own factor, and then add all the weights together for the total weight.

We have incidentally referred to Molesworth's pocket-book, which is a most useful aid to the draughtsman, containing, as it does, so many valuable tables and formulæ for his assistance. If one is well acquainted with the various tables in this and other books, a wonderful amount of work may be saved. For example, it is never necessary to obtain the area of a circle by squaring its diameter and multiplying by 0.7854, as we have only to consult the table to find it all done for
us from \(\frac{1}{8} \)-inch up to 100 inches diameter, advancing by \(\frac{1}{8} \)-ths and \(\frac{1}{10} \)-ths all the way. The same with squares and square root, and cubes and cube root.

Suppose we want to find the cubic capacity of a cylinder 21 inches diameter and 30 inches stroke, we look in the table for area of 21 inches, which equals 346.3 square inches, and then multiply this figure by 30 inches, which gives us the capacity in cubic inches; if we want the capacity in cubic feet, we divide this number by 1,728, being the number of cubic inches in a cubic foot.

Or if we are dealing with circular figures, of which the superficial area is required, such as a boiler shell 4 feet diameter and 10 feet long. To find the circumference, we should not trouble to work it out by multiplying 4 by 3.1416, but look in the table of circumferences, and opposite 4 we should find 12.56. We should, therefore, take 12.56 and multiply it by 10, and obtain 125.6 square feet, the superficial surface of the shell.
CHAPTER VII

PREPARATION FOR DRAUGHTSMEN ENGAGED IN VARIOUS BRANCHES OF WORK

Roof, Bridge, and Girder Work. With this class of work in view a man should study mechanics, especially the composition and resolution of forces, as problems constantly arise relative to the stresses on the booms and lattice bars of girders, and in the ties and struts of roof principals. He must study the weight likely to come upon the structures by such agencies as the wind and snow, besides that of the special loads the structures are designed to carry. It is also necessary to have a good knowledge of the strength of materials, especially steel and wrought and cast iron, and to study all kinds of fastenings for plates, bars, angles, tees, &c., so that the necessary strength can be obtained with due economy of material. The question of expansion and contraction of metals is also very important, as these have to be allowed for in all large structures by means of roller bearings or other devices.

The stresses in the various members of a girder or roof truss can be calculated, or they can be found by means of “graphic statics,” the latter method having come much into use of late years. It consists of drawing diagrams to a certain scale of the load on the drawing of the girder or truss itself in such a way that the stresses on the various members can be read off directly by a scale without calculation.
“Graphic statics” can also be used for many other purposes, such, for instance, as finding the bending moments in an axle, or the stress on the crankpin of an engine at various points of the stroke.

In constructing girders or principals, it must be borne in mind that the structures have to carry their own weight in addition to any extraneous load; and in the first place this weight has to be assumed and added to the load which the girder or other structure is being designed to carry. This assumed weight can sometimes be approximated from the known weight of other structures doing similar work; but after the girder has been roughed out the weight can again be checked over, and the total load corrected as required before finally finishing the drawing. Girders are usually built with a camber—that is, slightly hog-backed, or higher at the middle than at the ends. This is done to counteract the slight sag which takes place when the girder is in position and the load comes upon it, and the camber should equal the calculated deflection of the girder. As a rough guide we may say that a girder 40 feet long would have about 1 inch of camber. The amount of camber is noted on the drawing, but the drawing itself is of course made straight. All plates should be kept as uniform in thickness as may be, all tees and angles as uniform in section as possible, and for ordinary work 3/4-inch rivets about 4-inch pitch should be used.

Hydraulic engineering. In addition to mechanics, study hydraulics and hydrostatics; also the strength of materials, especially of cast iron and cast steel, these being most commonly used for the cylinders of hydraulic machines and tools. Steel is generally used for the very high pressures which obtain in these days, amounting in some cases to 5 tons per square inch. For these high pressures cast iron is not suitable, as, to obtain the
requisite strength, the metal has to be made so thick
that it sometimes becomes unsound through its own
contraction in cooling.

The water pressure for working hydraulic machinery,
such as cranes, lifts, rivetters, and presses, is generally
obtained with the following plant: an accumulator
worked by pumping engine, or by pumps driven from
gearing. The accumulator serves the purpose of a fly
wheel on a steam engine, viz. to store the power until
required. It is usually a cylinder about 17 feet long
and 17 inches in diameter, with a heavy weight on the
ram sufficient to give the pressure required per square
inch, in some cases 700 lbs. The accumulator should
be of such a capacity that when the maximum number
of machines are drawing water from it the ram should
not be at the bottom of the cylinder.

In cranes and hoists the stroke of the cylinder is
frequently only a tenth or twelfth of that of the load;
therefore, supposing a weight of 30 cwts. had to be
lifted, the cylinder would have to be equal to ten or
twelve times that weight—that is, 15 or 18 tons—and
beyond this there would have to be a large allowance
made for friction caused by the extra gearing, besides
that from the packing.

Electrical work. To render himself efficient in this
class of work we would recommend a man to train him-
selves as far as possible, as follows: In mathematics at
least up to second stage in Science and Art examina-
tion. Steam, mechanics, theoretical and applied, and
solids and fluids. Magnetism and electricity; dynamos,
design, and construction; electrical testing, sound,
light, and heat; machine drawing, solid geometry; and,
if possible, building construction; which, although not
really essential, will come in very handy sometimes.
It is also very advisable to have had a good mechanical
shop training. This last point is one considerably neglected, and, in consequence, there can be found plenty of smart young theoretical electricians who are short of practical mechanical knowledge.

Marine engineering and shipbuilding. A youth entering the drawing office in either of the above departments should be well grounded in arithmetic, and for marine engineering work should have previously had a year or two in the fitting, erecting, and pattern shops, and also, if possible, have had a voyage or two at sea on the engineer’s staff.

For shipbuilding he should have spent a year or two in the plating, smithy, moulding, and pattern shops. This preliminary training in the shops gives practical acquaintance with materials, tools, and technical terms.

Whilst working in the shops, evening classes should be attended in mechanical and freehand drawing, elementary algebra, mechanics, hydraulics, pneumatics, and mensuration. After entering the drawing office studies should be continued in advanced work in above subjects, and in addition weights and strengths of materials and graphic statics should be taken up, also, for marine engineering, heat and steam, and for shipbuilding, mensuration of solids, conic sections, and calculations of displacement, centres of gravity, and metacentre.

In marine engine drawing, boards generally used are double elephant and antiquarian, and the general arrangement of the engines and boilers is drawn to as large a scale as the boards will admit, such as $\frac{3}{4}$ inch, 1 inch, or $1\frac{1}{2}$ inches to 1 foot.

In shipbuilding drawing, the smallest boards are double elephant size, whilst there are larger ones that run to 15 feet or more. The lines and general working drawings of large vessels are usually drawn $\frac{1}{4}$ inch to
1 foot; rigging plans to \(\frac{1}{8} \) inch to 1 foot; and detail
\(\frac{1}{4} \) inch, \(\frac{3}{4} \) inch, 1 inch, 1\(\frac{1}{2} \) inches, 3 inches, and 6 inches
to 1 foot, and full size, as their importance requires.

Cloth tracings, photo. prints, and sometimes hand
sketches are sent into the shop to be worked to; but
the original drawings are often kept in pencil until the
work is complete, and then checked over and altered
where necessary and inked in. One awkward feature of
this arrangement is that the boards are practically
locked up for months, or even a year or more, and are
often in the way.

The difference between engine and ship drawing may
be summed up thus: In engine work there are many
straight lines, some circles, and few curves, and in ship
work there are many curves, some straight lines, and
very few circles. This leads us to remark that in the
case of ships' curves it is no easy matter to lay them
down, and they have to be judged in great measure by
the eye; it is, therefore, very essential that the ship
draughtsman should have sound eyesight, and not suffer
in the least degree from astigmatism. Those who suffer
from this never see a circle as it truly is, but always
more or less flattened.

The checking over of drawings before they go into
the shops is not always attended to as it should be, and
many costly mistakes have occurred in consequence.
Too often the draughtsman depends upon the shop
foreman finding out discrepancies before the work goes
too far.

The appliances usually provided in these offices are
boards, tee-squares, extra large set-squares, long straight-
edges, splines or battens, french and ships' curves,
weights, sponges, glue-pot, note-books, colour saucers,
colours, indian ink, pencils, and sometimes parallel
rulers, planimeters, and beam compasses.
CHAPTER VIII

STRETCHING PAPER, MOUNTING DRAWINGS, AND TRACINGS

If a drawing in pencil only is required on a sheet of cartridge or Whatman's paper it will be sufficient to fasten the paper down with half a dozen drawing pins, or with as many tacks.

If a more finished drawing is required on a sheet of Whatman's unmounted paper, it will be better to stretch it; this can be done either by gluing it down or by tacking it round the margin with tacks placed about 3 or 4 inches apart. If the tacking is preferred, only damp the paper slightly before tacking it down, otherwise when it is dry it will pull away from the tacks. If glue is preferred have the glue and brush ready, then take a lath and lay it along each edge of the paper and fold up about three-eighths of an inch all round. Now take a sponge moderately wet and pass all over the paper on the top side, the edges included; when it has lain a minute or two to expand, put the lath against one turned-up edge of the paper, and pass the glue brush along that edge of the paper which is against the lath, and turn the lath down, thus pressing the glued edge of the paper to the board. Serve the opposite edge of the paper in the same way, and, lastly, the other two sides, keep putting the lath upon each edge in
turn, rubbing and pressing them down until they have got firm hold; then leave the paper to dry placed horizontally, for if the board is stood down the moisture in the paper will tend towards the bottom edge and perhaps loosen the glue. Keep examining the paper from time to time and rub the edges down occasionally, but it will not be ready to work on for three or four hours.

If the drawing is to be made on mounted paper—that is, Whatman's paper on brown holland—turn the paper over and sponge the canvas back pretty thoroughly; let it lie a few minutes to expand, and then tack down with tacks about 3 inches pitch beginning in the middle of each edge and gradually working out to all the corners as nearly as may be at the same time; then leave it to dry for about half a day. The tacks may be placed close to the edge of the paper—within, say, a quarter of an inch—and when the drawing is finished of course the edges of the paper can be trimmed up.

In making a tracing on paper, set the drawing square on the board with four tacks or pins, and then fasten the tracing paper down with pins if it is as large as the drawing, if not hold it down by means of lead weights.

In making a cloth tracing, it is well to cut the cloth rather larger than the drawing, and tack to the board just outside the drawing with tacks about 6 inches pitch, and, as the cloth usually expands a little on exposure to the atmosphere, it is a good plan to cut off what is required from the roll and to let it lie open an hour or two before finally tacking it down. Even with this care a sudden change in the temperature will sometimes cause a cloth tracing to become quite baggy whilst it is in progress; therefore, if it is a large tracing containing several views, it is better to work so
as to finish one view right out than to do a little of each all over the board.

The paper on which prints are made is usually too soft to withstand the rough usage of the shops, so the prints are generally mounted on adhesive cloth. This is cloth with a facing of paper, upon which is a layer of gum. To mount a blue or black-and-white print, first damp the print thoroughly, then take a piece of the adhesive cloth an inch or so larger than the print each way, and tack it down on a mounting board, with the gummed side uppermost; next, with a sponge, wet the gum thoroughly all over, taking care not to wash it off. Now lay the print carefully on the wetted sheet, and roll it down well; then leave it for the best part of a day to dry thoroughly, after which cut it out by passing a knife round it within the tacks, and trim off square on the cutting board.

To repair old drawings which may be torn right up the middle, take a strip of old drawing paper about 9 inches wide and paste it up the back of the torn drawing; then take a sheet of linen or brown holland the size of the drawing, tack it on the mounting board, paste it all over, and then lay the drawing upon it, roll it well down, and leave to dry thoroughly before cutting it off. Paper tracings may be mounted on adhesive cloth in the same way as described for prints.

In large offices there is generally kept a handy man to run errands, rub ink, mount or stretch paper and tracings, and do other such services; but in smaller offices the draughtsmen have to stretch their own paper and mount tracings, so it is quite as well to know how to do so.
CHAPTER IX

TRACINGS AND BLUE OR BLACK-AND-WHITE PRINTS

In some works it is the practice to send original drawings into the shops to be worked to, whilst in others the original drawings are kept in the office, and only copies of them, in the form of tracings or of photoprints, are sent out. If tracings are used for the shops, they are generally made on tracing cloth; this cloth has a shiny side and a rather dull one, and it is a matter of taste on which side the tracing is made, some preferring it on one side and some on the other. If any sections or other work on the tracing have to be coloured, it is better to do the colouring on the reverse side to that on which the lines are, as by so doing there will be no chance of rubbing up the lines, and the colour can be applied very roughly, as long it is kept within the bounds of the lines, and yet look quite neat on the front of the tracing.

If instead of sending the tracing into the shop it is to be used for photo-printing, the sections should be treated as follows. Supposing that “blue prints” are required—that is, white lines on a blue ground—all the sections must be ruled in lines with black ink on the tracing, and the names of the different metals, &c., must be written on or opposite each piece; but if the
prints are required to be "black-and-white"—that is, a black or dark-grey line on a white ground—the tracing should not be sectioned at all; but when the prints are taken off they can be coloured with the proper conventional colours to represent the different substances. The "black-and-white" prints are much the best in many respects, and especially when it comes to alterations. In the latter case the lines can be bleached out by the following solution: 3 parts of water and 1 part of strong hydrochloric acid; apply with a camel-hair brush, and when the lines have disappeared blot the solution up and wash the part with clean water. When the part is quite dry mix a tint to match the other lines, and draw the fresh work in as required; if the operation has been carefully performed, it will be difficult to find the place afterwards.

It is impossible to alter blue prints (white lines on a blue ground) so that the alteration is not noticeable—the great difficulty being this, that although we can very easily make fresh white lines by using a saturated solution of potassium oxalate, it is impossible to stop out the white lines which we may want to remove so that the alteration cannot be seen. Therefore the only thing to do is to make the alteration as plain and legible as can be. A very good way to do this is to mix together some of the oxalate solution with some ordinary red writing ink, and use with the ordinary pens, &c., direct. The result is that the solution bleaches away the blue ground, and the red fluid colours the line at the same time, and shows up quite distinctly on the blue ground.

Tracings for printing should be done on good tracing paper or cloth, preferably of a bluish tint, and any yellowish tint should be carefully avoided. The ink should be quite black, and the addition of a little burnt
sienna to it is recommended. All centre and dimension lines should be in some opaque red colour, such as scarlet lake or vermilion. If, as is sometimes the case, blue lines are required upon the tracing to show certain work, they will come out very faintly on the prints, and will require to be strengthened up on the latter by hand after the prints are taken.

We may perhaps conclude our remarks on this subject with a brief account of the materials and chemicals used in the two processes we have referred to, they being the two perhaps the most generally in use.

Taking the ferrotype, or white line on a blue ground, process first, the solutions for sensitising the paper are as follows:

\[
\begin{align*}
A & \{ \text{Citrate of iron and ammonia} & 100 \text{ grains} \\
 & \text{Water} & \text{1 oz.} \\
B & \{ \text{Red prussiate of potash} & 70 \text{ grains} \\
 & \text{Water} & \text{1 oz.}
\end{align*}
\]

These solutions will keep any time separately, but when mixed they must be used at once or kept in a dark place.

To prepare the paper mix an equal quantity of A and B, and apply freely to the surface of the paper for about two minutes; then drain off the superfluous liquid, and hang up to dry in a dark room; the paper will be found then to be of a bright yellow hue.

To take a print, place the tracing in the printing frame with its face to the glass, and then place a sheet of the prepared paper with its sensitised surface next to the tracing, and expose to the light for a period varying from three minutes to half an hour, according to the strength of the light. When the print is taken out of the frame it must be laid in a bath of clean water for ten or fifteen minutes until the lines show perfectly
white. It may then be taken out of the bath and hung up to dry.

In the "Cola" black-and-white process—that is, black lines upon a white ground—the sensitising solution is as follows:

- Perchloride of iron 1 oz.
- Gelatine 2 "
- Tartaric acid 1 "
- Persulphate of zinc 1 "
- Water 30 "

After taking the print, in the same way as before described, and watching its progress until the blank parts of the paper have turned white, take it from the frame and immerse it in a bath of the following solution:

- Gallic acid 1 oz.
- Methylated spirit 10 "
- Water 50 "

When the lines have turned from the yellow colour with which they leave the frame to black, take the print out of the bath, rinse it in clear water, and hang up to dry.

With regard to preparing the paper, it is perhaps better to buy it ready prepared from a large maker, as by this means more uniform quality will be obtained.

The printing frame is an appliance to which special attention must be given. It must be fitted with a stout and very clear piece of glass, and must be fitted with a back which will bring every part of the prepared paper and the tracing into close contact with the glass, for if there is any space, however small, allowed between the surfaces, it interferes with the print and makes the
lines blurred or very faint. And with regard to the requisite exposure of the prints to the light, it is a good plan to try small pieces of test paper, and note the time required to print to develop to the correct tone and colour, as a guide to properly manipulating the actual prints.
CHAPTER X

RECORDS AND STORAGE OF DRAWINGS, TRACINGS,
AND PRINTS

There are several systems of booking drawings and
tracings, &c., in vogue in different offices, from very
elementary ones which are scarcely worth calling
systems at all, and which rely almost altogether upon
the knowledge or memory of one or two people, to
more elaborate ones where every effort is made to
record things properly, and thus enable anyone to find
the requisite drawing or tracing.

The following method may be found to answer as
well as any:

Certain books are kept in the drawing office, viz.
"The Drawing Book," "The Tracing and Print Book"
(for the works), "The Tracing Book Outwards," "The
Tracing Book Inwards," "Letter and Sketch Book,"
and "Estimate Book."

Besides these, in large works there are special books
kept to record the subsequent passage to and fro
between the office and the works for alteration or other-
wise of all tracings and prints, so that their whereabouts
can be discovered at any time.

We will go a little more into detail in reference to
the books mentioned, commencing with
THE DRAWING BOOK

The headings in this are arranged as shown, and one or two sample entries are given:

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of Drawing</th>
<th>Title of Drawing</th>
<th>No. of Drawer</th>
<th>Draughtsman's Signature</th>
<th>Head Draughtsman's Signature</th>
<th>Date of Completion of Drawing</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 15, 1895</td>
<td>1068</td>
<td>General arrangement of stationary engine cylinders, 15 in. × 21 in.</td>
<td>48</td>
<td>A.B.</td>
<td>X.Y.</td>
<td>Oct. 30, 1895</td>
<td>At 100 revolutions approximate H.P. 150</td>
</tr>
<tr>
<td>Nov. 15, 1895</td>
<td>1069</td>
<td>Detail of cylinders, 15 in. × 21 in.</td>
<td>48</td>
<td>A.B.</td>
<td>X.Y.</td>
<td>Nov. 6, 1895</td>
<td></td>
</tr>
</tbody>
</table>

TRACING AND PRINT BOOK (for the works)

In this book are entered all the tracings and prints which are sent into the shops to be worked to, and it is arranged as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of Tracing or Print</th>
<th>Title of Tracing or Print</th>
<th>Tracing or Print</th>
<th>Draughtsman's Signature</th>
<th>Head Draughtsman's Signature</th>
<th>Name of Shop Sent to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 17, 1895</td>
<td>1,200</td>
<td>15 in. × 21 in. Stationary Engine. Details of Castings</td>
<td>Print</td>
<td>C.D.</td>
<td>X.Y.</td>
<td>Pattern Shop</td>
</tr>
</tbody>
</table>

TRACING BOOK—OUTWARDS

This is for the registration of tracings or prints sent
away to other firms or people when tendering or estimating for work, and has headings thus:

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of Tracing</th>
<th>Title or Description of Tracing</th>
<th>To whom Sent</th>
<th>Draughtsman's Signature</th>
<th>Head Draughtsman's Signature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRACING BOOK—INWARDS

For the registration of tracings, &c., received from outside firms asking for tenders for work, &c.:

<table>
<thead>
<tr>
<th>Date Received in Office</th>
<th>No. of Tracing given by Office to Tracing Received</th>
<th>Title or Description of Tracing</th>
<th>From Whom Received</th>
<th>Head Draughtsman's Signature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LETTER AND SKETCH BOOK

This is a copying-book, into which all hand sketches and notes affecting work are copied before being sent into the shops, and has an index which is kept posted up so that the sketches, &c., may be readily referred to.

ESTIMATE BOOK

This is also a copying-book, into which all estimates are copied before being sent away, and is likewise kept carefully indexed.

Drawings are usually stored in drawers made of such a size as to take Antiquarian paper easily—that is, about 56 inches by 34 inches—and of such a depth, about 2 inches, as to hold, say, fifty drawings.
Each drawer is kept for a certain class of work, and is labelled accordingly as "stationary engines," "tools," "hydraulic hoists," or "cranes," and is also provided with a number. Every drawing is numbered with the drawer number and a number of its own written in the form of a fraction, thus: \(\frac{19}{100}\), the top figure being the drawer number and the bottom one that of the drawing. Each drawing as it is entered in the book takes the next number to the preceding one, and, as far as possible, drawings of the same piece of machinery, tool, or building are kept together; thus, supposing the draughtsman is about to get out a set of drawings for a stationary engine, and he requires to make six drawings, such as "general arrangement," "cast details," "wrought details," &c., he would secure six consecutive numbers in the book, and when the drawings were made they would be entered in the book and numbered accordingly. The drawings should also always be kept in consecutive order in the drawers, as this enables them to be picked out with greater facility.

Each tracing is also numbered in its turn as it is entered in the tracing book, and it is also signed by the head draughtsman to certify its correctness, and by the manager of the works as authority to the foreman to proceed with the work. The tracing is also stamped with the name of the firm and the date, for which purpose a rubber stamp, in which the date can be changed daily, is used; the stamps vary in shape, but the round or the oval form are very frequently used.

When a tracing is made from a drawing a note to that effect is put on the latter, and the number of the tracing is also given, with the date. Where there is a set of drawings belonging to one job it is very useful to put on the general arrangement drawing a list of all the detail drawings, with their numbers, and also on
the general arrangement tracing a list of all the detail tracings, with their numbers, so that the foremen and workmen can see at a glance what tracings are sent out for them to work to.

While we are mentioning these little arrangements for saving trouble, we may point out one more that does not always receive sufficient attention. In many cases certain parts of engines or pieces of machinery are brought in over and over again for different work. These parts are often just shown on the new drawing, without any dimensions or other particulars, but with simply a note to say similar to so and so on tracing No. —. This practice causes great waste of time in the shops, and it is much better to let the draughtsman show the piece and fully dimension it over again, and at the same time add a note to the effect that it is similar to something that has gone out before, to remind the foreman and others that there is a pattern or template for it.

All patterns as they are made are stamped with a number, or have one painted upon them, and when these are brought in for another piece of work their numbers should be given upon the drawing and tracing.
CHAPTER XI

THE PLANIMETER AND ITS USE

Fig. 73 shows an ordinary form of the planimeter, and fig. 74 an enlarged view of the recording portion of the apparatus. The dial A is divided into ten parts

![Diagram](image)

and the wheel B is also divided into ten parts, but the wheel B rotates once whilst the dial makes $\frac{1}{10}$ th of a revolution. Therefore, if we call the figures on the dial units, those on the wheel will be $\frac{1}{10}$ ths. Each tenth of the wheel is subdivided into 10 again, therefore the subdivisions count for $\frac{1}{100}$ ths; and as the vernier C, which equals $\frac{9}{100}$ of the wheel divided into ten parts
again, will give us \(\frac{1}{10000} \) ths, it will be seen that we can read the instrument off to three places of decimals. Thus, supposing it is in the position shown in fig. 64, we get units 2 from the disc, .45 from the roller, and 9 from the vernier, the figure from the vernier being taken from that division which is exactly opposite one on the roller, the complete reading being 2.459.

The best way to obtain freedom and proficiency in the use of the instrument is to mark out on a sheet of paper (which must be level) some plain figure, of which the exact area is known, say a square of 3 inches side; of course, we know that the area of this will be exactly 9 square inches. Now set the instrument, as shown in fig. 75, with needle point E at any convenient place outside the area to be measured, then place the pointer D at one corner of the square. Note the reading of the dial and wheel whatever it is, without troubling to place the figures at zero, and, say the record was 2.718, then carefully follow the outline of the square once round, leaving off exactly where we started, and
take the reading again; it will be 3.618. Now deduct 2.718 from 3.618 and we have .9, and this figure \times 10 = 9 square inches, the exact area of the figure. And in every case the difference between the two readings, multiplied by 10, will give the area in square inches. It is usual to work the pointer round in the direction of the apparent travelling of the sun or of the hands of a watch, but it makes no real difference which way the pointer is travelled, for the differences between the readings will be exactly the same. To prove this suppose the last reading taken, 3.618, is an initial reading, and reverse the travel of the pointer round the figure, then the second reading will be 2.718, and, of course, the difference between the two will still be .9.

The area of any small figures are taken with the needle point outside of them, but with larger figures it becomes necessary to put the needle point within the figure to be measured, as shown in fig. 76. Following our former practice, let us take a circle 10 inches diameter, the area of which is known to be 78.54 square inches. Place the needle point E somewhere near the centre of the figure, and press point D lightly into the paper anywhere in the circumference of the circle, and take a reading off the dial, &c.; then go roughly round
the figure in the direction of the sun, and at the same time watch the dial and note if the figures upon it make a forward movement or a backward one, and note also if the zero mark is passed once or twice. If the figures on the dial make a backward movement, proceed as follows: Begin again at the mark in circumference of circle and read off dial, &c., carefully; suppose the reading is 6.090, then follow the circle round to the same place again, and the second reading will be 2.652. As the dial moved past the zero once, we must add ten to the first reading, thus making it 16.090; now, deducting the second reading from the first, we get 13.438, and this figure has to be deducted from the number printed on the weight on an ordinary planimeter, or on the bar over the unit mark on an adjusting planimeter; the number in our case is 21.292, and this minus 13.438 equals 7.854, which, multiplied by 10, gives us the right answer, viz. 78.54. We will now put these figures in a tabular form that they may be seen more readily.
First reading (+10) as counter went once = 16.090

Second reading = 2652
Difference = 13438
Fig. printed on bar = 21.292
Difference as above = 13438

7.854 x 10 = constant multiplier

No. of square inches = 78.54

It depends upon where the first reading happens to come as to whether the dial passes the zero mark one or more times, and we will now give an instance where the zero would be passed twice, taking the same sized circular figure as above.

First reading 1.487 (+20 as counter went twice past zero) = 21.487

Second reading = 8.049
Difference = 13438

Then, as before, fig. printed on bar = 21.292
Difference as above = 13438

7.854 x 10 = 78.54 sq.in.

Now, we will take an example where the dial will make a forward movement when recording, and, as this will require a larger figure, we will assume that we want to obtain the area of a circle 20 inches in diameter, the area being 314.16 square inches.

Instead of deducting the second reading from the first, and then deducting the difference from the number on the bar, as we did in the case of the backward move-
ment, we now deduct the first reading from the second, and add the difference to the number on the bar, thus:

Second reading 1.800
(+ 10 as counter went) = 11.800
once past zero)

First reading = 1.676
Difference = 10.124
No. on bar = 21.292

\[\frac{31416}{10} = \text{constant multiplier} \]

No. of square inches = 314.16
If the counter had gone twice past zero, we should, of course, have added 20 to the second reading.

To find the area of figures which are drawn to scale, proceed as follows: Obtain the actual area of the figure in square inches, as shown, and then multiply the result by the square of the scale; thus, in the case of 1\(\frac{1}{2}\) inches to the foot, as there are eight 1\(\frac{1}{2}\) inches in a foot, or the scale is \(\frac{8}{8}\)th the full size, we should multiply by 8\(^2\) or 64. In the case of \(\frac{1}{3}\) inch to the foot we should therefore multiply by 24\(^2\) or 576, and thus in each case obtain the actual number of square inches in the required area. This can easily be verified, as before, by taking a square 3 inches each way, and then supposing it to represent a drawing at 1\(\frac{1}{2}\) inches to the foot, and afterwards one at \(\frac{1}{3}\) inch to the foot, and comparing its known areas with those found by the planimeter.

One very useful purpose to which the instrument can be applied is to find the areas of indicator-diagrams and their mean pressures, without resorting to ordinates or in any way defacing the diagrams. To perform this operation with an ordinary planimeter proceed as
follows: Take the difference of the two readings before and after running the pointer round the diagram, then multiply this difference by the scale of the diagram, and divide by its actual length in inches; the answer will be the mean pressure in pounds per square inch.

The following instance is taken from an actual diagram:

Second reading = 0.414
First " = 0.180
Difference = 0.234

\[\frac{2.34}{40} \text{= scale of } 40 \text{ lbs. to 1 inch.} \]

Length of diagram = 4'' 93.60
\[23.4 = \text{mean pressure in lbs. per square inch.} \]

Special planimeters are made for indicator-diagram work of the form shown in fig. 77. In using these set the two points on the top of the bar to the length of the diagram, then take the difference of two readings as before, multiply this difference by the scale, and divide by 0.4; the answer will be the mean pressure in lbs. per square inch. Thus, to give an instance in
figures, from the same diagram as in the preceding example—

Second reading = 0.941
First " = 0.707
Difference = 0.234

\[\frac{40}{40} = \text{scale of 40 lbs. to 1 inch.} \]

Constant divisor = 0.4, 0.360

\[23.4 = \text{mean pressure in lbs. per square inch.} \]

In the case of working out indicator-diagrams with the planimeter, we would recommend the beginner to take a diagram and find out the mean effective pressure in the usual manner by ordinates, and then try to obtain the same result with the planimeter. With this method of working on figures of known area the operator will gain confidence, and so feel quite satisfied with the results that he may obtain afterwards from the instrument when dealing with figures of a complicated form.
CHAPTER XII

CONCLUSION

We propose to finish our hints to beginners with a few notes on points not previously touched upon.

Transfering drawings. It is often necessary to transfer a drawing or a portion of one from one sheet to another, sometimes to the same scale and at others to a larger or smaller scale. Supposing it is to be on the same scale, proceed as follows: Trace off the work carefully with a fine pencil on a piece of thin tracing paper, then if the object is only small rub over the back of the tracing with a soft blacklead, such as a B B; next place the tracing in proper position on the fresh sheet, and pin or weight it down, and again go over the lines with a stylus, or a smooth but hard-pointed pencil, when the object will be found printed on the paper. The lines can then be strengthened with pencil or inked in as required. Another method of transferring drawings to the same scale is to place the one drawing upon the other, and prick all points and corners through, after which the top drawing is removed, and lines are drawn from the various points; this is, however, a very tedious process, and one liable to lead to errors.

To transfer a drawing to a different scale a very good method is the following: Divide the drawing up into small squares, and the fresh sheet into the same number of squares, but larger or smaller as required by the
scale; then draw in the work in the corresponding squares.

An instrument called the pantagraph is sometimes used to reproduce drawings to the same or other scales; it is advisable, however, not to use it to enlarge a drawing, but only to reduce one, the reason for this being that in the one case any errors are magnified, but in the other they are minimised. As it is an instrument not commonly used, we need give no further particulars of it.

The draughtsman should be methodical in all things; he should do all his calculations in a book, and date and preserve them, so that he can always refer to them when required. He should also always put a date to every sketch or scheme that he makes, for very important issues sometimes hang upon the date when a certain design was got out. And for his own guidance he should note down any special formulæ, &c., that he comes across, but which are not, perhaps, in his ordinary books of reference. In course of time a man accumulates a quantity of books, papers, and notes, and cannot always remember where he can find what he requires. A good plan to get over this difficulty is to keep a rough index of all things which strike him as likely to be useful, and where they are to be found; if this index is kept posted up it will be found of great use.

There are two simple geometrical problems which are very useful to the draughtsman, and which are frequently overlooked, perhaps from their very simplicity. They are to make a scale of chords, and to divide a line into any number of equal parts.

To make a scale of chords, describe a semicircle with any convenient radius, say two inches, and divide the semicircle into eighteen parts. Each part will then represent \(10^\circ\); these parts can then be subdivided into
ten again, and each of these will represent 1°. Then from one end of the semicircle, describe arcs from each tenth degree to cut the base line, and number them as shown in fig. 78.
Now, suppose we wish to lay off an angle of 50° from line AB at point B in fig. 79. With point B as centre, and a radius of 2 inches, describe a portion of a circle; then measure off chord of 50° by the compasses from O, and set it off from A in point C; join BC, which will make an angle of 50° with AB. So for any angle, but always using a 2-inch radius, or whatever other radius has been used in constructing the scale of chords. If this is neatly worked out it can be pasted in the cover of a book, where it can always be got at, and will serve instead of a protractor.

To divide a line into any number of equal parts. Suppose we wish to divide line AB (fig. 80) into ten equal parts; from either end, say A, draw a line at any angle with AB, and with any convenient scale mark off ten parts along this line. Join the tenth part to B, and draw lines parallel to that from the other divisions to cut AB. The latter will then be divided into ten equal parts. Of course, the lines need not be actually drawn.
as long as the ticks on AB are made parallel to line joining $10B$.

Without attempting to give a complete list of books which might be useful to beginners and others, we will append a list of some which may be profitably studied. Many of them are recognised text-books in use at technical classes. The published prices are quoted, and, generally speaking, a discount of 25 per cent. can be obtained by ordering the books through proper channels.

"Algebra, Elementary," by Todhunter, 2s. 6d.
"Algebra, Advanced," by Todhunter, 7s. 6d.
"Euclid," by Todhunter, 3s. 6d.
"Trigonometry, Elementary," by Todhunter, 2s. 6d.
"Trigonometry, Advanced," by Todhunter, 5s.
"Geometry," by Rawle, 1s.
"Geometry, Elementary," by Angel, 1s. 6d.
"Geometry, Advanced," by Angel, vol. II., 6s.
"Heat, Introduction to Study of," by Hamblin Smith, 3s.
"Engineer's Pocket-Book," by Molesworth, 6s. This little book is indispensable to the mechanical draughtsman.
"Architect's Handbook," by Hurst, 5s. This handbook is extremely useful to the architect and builder.
"The Mechanical Engineer's Pocket-Book of Tables, Formulae, Rules, and Data," by Kinnear Clark, 9s.
"Templeton's Engineer's Assistant," 2s. 6d.
"Practical Engineer's Pocket-Book and Diary," * 1s.
"The Mechanical World Pocket Diary," * 6d.
"Calvart's Mechanic's Almanack," * 4d.
"Graphic Statics," by Gray & Lowson, 3s. 6d.
"Graphic Statics," by Clarke, 12s. 6d.
"Strains in Ironwork," by Adams, 5s. This is a capital little book, and does not require a knowledge of arithmetic beyond simple proportion.
"Handy Book of Strains," by Humber, 7s. 6d. A valuable book, but more advanced.
"Principles of Mechanics," by Goodeve, 6s.
"Elements of Mechanism," by Goodeve, 6s.
"Elements of Machine Design," by Unwin. Part I., 6s. Part II., 4s. 6d.
"Mechanical Engineering," by Adams, 6s.
"Workshop Appliances," by Shelley, 4s. 6d.
"Cranes and Lifting Machinery," by Marks, 2s. 6d.
"Steam Engine," by K. Clark, 48s.
"Handbook on the Steam Engine," by Haedar & Powles, 9s.
"Steam Boilers," by Wilson, 6s.
"Text-book on the Steam Engine," by Goodeve, 6s.

* These are annuals, and contain useful information about gas-engines, indicating, &c.
"Locomotive Engineering," by Colbourne. This work can be consulted in many libraries.

"Steam Engine Indicator," by Beaumont, 3s. 6d.

"Pumps: Historical, Theoretical, and Practical," by Björling, 7s. 6d.

"Surveying," by Merritt, 12s. 6d. This book is fully illustrated, and contains the necessary arithmetic, trigonometry, and geometry required.

"Principles of Pattern Making," published by Whittaker & Co., 3s. 6d.

"Magnetism and Electricity, Elementary," by Jamieson, 3s. 6d.

"Elementary Electricity," by Sylvanus Thompson, 4s. 6d.

"Electrical Engineering," by Slingo & Brooker, 10s.

"Architecture, Classic," by Smith & Slater, 5s.

"Architecture, Gothic and Renaissance," by Smith & Poynter, 5s. These two are capital books for the price.

"Building Construction," Rivington's. Vol. I., 10s. 6d. ; Vol. II., 10s. 6d. ; Vol. III., 21s. ; Vol. IV., 15s. These are good books. Vols. I. and II. give all kinds of details, well illustrated; Vol. III. deals with materials, and Vol. IV. with beams, girders, roofs, arches, &c.

"Mechanical Drawing Copies," by Busbridge, comprising all kinds of details, 3d. per sheet. Architectural ditto, same price. These copies are very useful to students.
INDEX

BEAM Compasses or Trammels, 14, 15
Bevel Wheels, 41, 42
Black and White Prints, 73, 75, 76
Blue Prints, 72, 73, 74, 76
Books, List of Useful, 94–96
Border Lines, 34
Brushes, 10

DRAWINGS, Repair of, 71
——— and Tracings, Record of, 77, 78
——— Storage of, 79, 80
——— Sectioning of, 26–28
——— Dimensioning of, 33, 34
——— for Shops, 45, 46

ELECTRICAL Work, 66, 67
Erasing Ink Lines, 26
Estimate Book, 79
Estimating, 53–55

FACTOR of Safety, 48
French Curves, 9

GRAPHIC Statics, 64, 65

HYDRAULIC Engineering, 65, 66
Hydrography, 53

INDELIBLE Water, 25
Indian Ink, 25
——— Pans for, 25
——— How to make it Flow, 25
Indicating Engines, 54, 56, 57
Indicators, 57

H
INDEX

Inking-in Drawings, 22
Instruments, Case for, 11

LETTER and Sketch-book, 79
Level, The, 49
Levelling and Surveying, 49, 51-53
Levelling Staff, 50
List of Colours, 28
Useful Books, 94-96

MAP Drawing, 53
Marine Work, 67, 68
Measuring Staffs, 17, 18
Tape, 18
up Work, 43-45
Mechanics, Science of, 60
Metals, Comparative Strengths of, 46, 47
Mounting Paper, 69-71

NEEDLE Points, 8

ORDNANCE Survey, 51
Orthographic Projection, 59

PAPER Mounting and Stretching, 69, 70
Parallel Ruler, 17, 18
Pen and Pencil Bows, 8
Pencils, 19, 20
Planimeter, 16, 82-89
Projection of Shadows, 59-61
Proportional Compasses, 16, 17
Protractor, 10

REPAIRING Drawings, 71
Right Angle, to lay off a, 52

SAUCERS, 10
Scale of Chords, 91-93
Scales, 14
Screw Threads, 37-40
Sectional Breaks, 32, 33
Sectioning Drawings, 26, 27
Sensitising Solutions, 74, 75
Set Squares, 8, 9
Use of, 35-37
“Setting” Drawing Pen, 20-22
Shade Lines, 22
Shading and Tinting, 28-32
Shipbuilding, 67, 68
Shop Drawings, 45, 46
Sketch-book, 43
Sketching, 43-45
Spur Wheels, 40, 41
Staffs for Measuring, 17, 18
Steam, The Science of, 60, 61
Stencilling Apparatus, 15, 16
Stretching Paper, 69-71
Surveying and Levelling, 49, 51-53

TAPE, 18
Tee Squares, 13, 14
Adjustable, 14
Theodolite, 49, 52
Tinting and Shading, 28-32
Titles for Drawings, 34
Toothed Wheels, 40-42
Tracing Books, 78-81
Tracings and Drawings, Record of, 77
Tracings on Cloth, 70, 71, 73, 74
Colouring of, 72
Trammels or Beam Compasses, 14, 15

WEIGHT of Structures, 65

Whittaker's Library

of

Arts, Sciences, Manufactures, and Industries.

(Continued from front of book.)

By G. E. Bonney.

ELECTRICAL EXPERIMENTS. With 144 Illustrations. 2s. 6d.
"This is an excellent book for boys."—*Electrical Review.*

By G. E. Bonney.

INDUCTION COILS. A Practical Manual for Amateur Coil-makers.
With 101 Illustrations. 3s.
"In Mr. Bonney's useful book every part of the coil is described minutely in detail, and the methods and materials required in insulating and winding the wire are fully considered."—*Electrical Review.*

By G. E. Bonney.

"An amateur could not wish for a better exposition of the elements of the subject... The work has an excellent index and 62 Illustrations, and will form a useful addition to Messrs. Whittaker's valuable series of practical manuals."—*Electrical Review.*

"The work is of evident utility, and has before it a future."—*Chemical News.*

"It contains a large amount of sound information."—*Nature.*

By H. Orford.

LENS WORK FOR AMATEURS. With numerous Illustrations.
Small crown 8vo. 3s.
"The book is a trustworthy guide to the manufacturer of lenses, suitable alike for the amateur and the young workman."—*Nature.*

"The author is both a sound practical optician and is able to convey his knowledge to others in a clear manner."—*British Journal of Photography.*

MODERN OPTICAL INSTRUMENTS. By the same Author.
(In the press.)

By J. Traill Taylor, Editor of 'The British Journal of Photography.'

THE OPTICS OF PHOTOGRAPHY AND PHOTOGRAPHIC LENSES. With 68 Illustrations. 3s. 6d.
"An excellent guide of great practical use."—*Nature.*

"Personally we look upon this book as a most valuable labour-saving invention, for no questions are so frequent, or take so long to answer, as those about lenses."—*Practical Photographer.*

"Written so plainly and clearly that we do not think the merest tyro will have any difficulty in mastering its contents."—*Amateur Photographer.*

THE PRACTICAL TELEPHONE HANDBOOK. With 228 Illustrations. Second Edition. Revised and considerably Enlarged. 5s.

The gratifying reception accorded this book now enables the author to issue a new edition in a considerably enlarged form. New chapters on Metallic-Circuit Working and on Electrical Measurements have been added, the former in order to keep pace with the rapid advance which has been made in that direction during late years, and the latter in order to make the book more complete.—*From the Preface.*

"This essentially practical book is published at an opportune moment."—*Electrician.*
By SYDNEY F. WALKER, M.I.E.E., A.M.Inst.C.E.

'It would be difficult to find a more painstaking writer when he is describing the conditions of practical success in a field which he has himself thoroughly explored.' — Electrician.

'Mr. Walker's book is evidently the work of a practical man who has had much experience. . . . The practical hints are likely to be of solid value.' — Saturday Review.

'The work is a valuable contribution to the literature of electrical science in its more practical forms.' — Iron and Coal Trades Review.

By D. DENNING.

THE ART AND CRAFT OF CABINET MAKING. A Practical Handbook to the Construction of Cabinet Furniture, the Use of Tools, Formation of Joints, Hints on Designing and Setting out Work, Veneering, &c. With 219 Illustrations. 5s.

'We heartily commend it.' — Cabinet Maker.

'Well planned, and written in a pleasing and simple style.' — Nature.

'A carefully-considered and well-written book.' — Work.

By F. C. ALLSOP, Author of 'The Telephones and Their Construction.'

'A book we have every confidence in recommending.' — Daily Chronicle.

'A highly practical and useful book.' — Lightning.

'The book is certainly very complete.' — Electrical Review.

By J. HOPKINSON, D.Sc., F.R.S.

Dynamo Machinery, Original Papers On. With 98 Illustrations. 5s.

'Must prove of great value to the student and young engineer.' — English Mechanic.

'A most valuable work.' — Electrical Review.

By S. R. BOTTONE.

'To those about to study electricity and its application this book will form a very useful companion.' — Mechanical World.

By S. R. BOTTONE.

'Mr. Bottone has the faculty of writing so as to be understood by amateurs.' — Industries.

'The explanations are very clear and readily understood.' — Marine Engineer.

'We are certain that the knowledge gained in constructing machines such as described in this book will be of great value to the worker.' — Electrical Engineer.

By S. R. BOTTONE.

ELECTRIC BELLS, AND ALL ABOUT THEM. A Practical Book for Practical Men. With more than 100 Illustrations. Fifth Edition, Revised and Enlarged. 3s.

'Any one desirous of undertaking the practical work of electric bell-fitting will find everything, or nearly everything, he wants to know.' — Electrician.

'No bell-fitter should be without it.' — Building News.

By S. R. BOTTONE.

THE DYNAMO: How Made and How Used. Ninth Edition, with additional matter and illustrations. 2s. 6d.
Handbooks for Civil, Electrical, & Mechanical Engineers, and for Students in Science and Technology.

Published by Whittaker & Co., Paternoster Square, London, E.C.

(For Index of Authors and Subjects see end.)

THE SPECIALISTS’ SERIES.

'Whittaker’s excellent Specialists’ Series for Engineering Students.'—Saturday Review.
'Whittaker’s well-known and valuable Specialists’ Series.'—Electrician.
'The Specialists’ Series of technical books is well known and appreciated.'—Nature.
'Messrs. Whittaker’s excellent Specialists’ Series.'—Daily Chronicle.

By Gisbert Kapp.

Transformers for Single and Polyphase Alternating Currents.

By G. R. Bodmer, A.M.Inst.C.E., Author of ‘Hydraulic Motors.’

Railway Material. The Inspection of.

'The most complete epitome of present-day telephonic practice.'—Electrical Engineer.

'The work is exhaustive of its subject, without being overburdened with minute technical details.'—Times.
THE SPECIALISTS' SERIES (Continued).

SURVEYING AND SURVEYING INSTRUMENTS. With 41 Illustrations. 4s. 6d.

Contents:—Surveys with Chain only—Obstructions in Chain-Line and Right-Angle Instruments—The Uses of the Level—Various Forms of Level and their Adjustments—The Uses of Angle-measuring Instruments—The Theodolite and other Angle-measuring Instruments—Instruments for Ascertaining Distances,

'This is a very neat little text-book, and very suitable for students preparing to pass the Institute examinations.'—Journ. of Royal Inst. of British Architects.

By J. O. Arnold, Professor of Metallurgy, Sheffield Technical School.

STEEL WORKS ANALYSIS. With 22 Illustrations and Diagrams. Crown 8vo. 10s. 6d.

Contents:—The Steel Works—Laboratory and Appliances—Section I. Analysis of Steel and Wrought Iron; II. Analysis of Iron Ore; III. Refractory Materials; IV. Fuel; V. Sundrys.

'This book is of an essentially practical character.'—Engineer.

'Everything that a steel-works' analyst may fairly be called upon to examine finds a place in this volume... Prof. Arnold has rendered steel-works' analysis a decided service by the publication of his work.'—Prof. John Parry in Nature.

'We can heartily recommend this book.'—Electrician.

THE DYNAMO, ITS THEORY, DESIGN AND MANUFACTURE. With 190 Illustrations, mostly from original Drawings. Second Edition, Revised. 10s. 6d.

'A work of no mean ability. One valuable feature throughout the book is the excellence and number of the illustrations.'—Electrical Engineer.

'The work is well-arranged... the explanations are clear and the formulae simple... The classification of dynamos is very good and rational.'—Electrical Review.

'We welcome this book as a thoroughly trustworthy and useful work,'—Electrician.
THE SPECIALISTS' SERIES (Continued).

By GISBERT KAPP, C.E., Member of the Institution of Civil Engineers, Member of the Institution of Electrical Engineers.

. The work has been brought up to date, both as regards theory and practice.

Specimen of Illustrations from Kapp's 'Electric Transmission of Energy.'

'This book is one which must of necessity be found in the hands of every one who desires to become acquainted with the best and latest information on the subject.'—Electrical Engineer.

'The book is an excellent one in every way, and will, we imagine, long be regarded as the standard treatise on the electrical transmission of energy.'—Mechanical World.

'Although, therefore, the book will be of greater interest to the trained specialist, it has an intrinsic value for the average manufacturer who is willing to give a little study to the subject.'—Textile Recorder.

'Is one of the most generally useful books to the electrical engineer which has been published.'—Industries and Iron.
THE SPECIALISTS' SERIES
(Continued).

By Sir D. Salomons, Vice-President of the Institution of Electrical Engineers,

ELECTRIC LIGHT INSTALLATIONS.
Vol. I.—ACCUMULATORS. With 33 Illustrations. 5s.

'A capital practical handbook.'

Mechanical World.

'The best work on the subject.'

English Mechanic.

Vol. III.—APPLICATION. With 32 Illustrations. 340 pp. 5s.

'The book in its present form is more useful than any of the earlier editions, and contains much more information.'

Engineer.

'A seventh edition reviews itself. It says, "I am wanted, and therefor I am here."'

Electrical Engineer.

'The great characteristic of Sir David Salomons' writings is their exceedingly practical common sense.'

Indian Engineer.

Diagram of Photometer, from Salomons' 'Electric Light Installations.' 3 vols.

By Oscar Guttmann, Assoc. M.Inst.C.E., F.I.C., Member of the Societies of Civil Engineers and Architects of Vienna and Budapest, Corresponding Member of the Im. Roy. Geological Inst. of Austria, &c.

'*' The work contains the most recent information on Gunpowder, Gun-cotton, Dynamite, Smokeless Powders, Fulminates, &c.

'The author has been fortunate in finding a clear field for a full and comprehensive work giving the details of the most modern systems of manufacture. This has been so well done in the volumes before us, that we regret that the space at command prevents us from giving more than a brief indication of their contents.'—Engineer.

'A work of such magnitude and importance, that it will undoubtedly take a leading place in the literature on the subject.'—Arms and Explosives.
'This work commends itself most strongly to all manufacturers and users of explosives, and not less to experts.'—*Chemical News*.

'He who wants to know all about everything in the way of cordite and its rival "ites," will find whatever he can possibly desire to know in Mr. Guttman's volumes.'—*Daily Chronicle*.

'Well conceived, well arranged, well executed.'—*Scotsman*.

'The work is full of valuable information.'—*Manchester Guardian*.

Specimen of Illustrations from Guttman's "Explosives."
THE SPECIALISTS' SERIES (Continued).

By G. R. BODMER, A.M.Inst.C.E.

'A distinct acquisition to our technical literature.'—Engineering.
'The best text-book we have seen on a little-known subject.'—Marine Engineer.
'A well-known and deservedly successful work.'—Electrician.
'An excellent treatise.'—Nature.
'This standard work has been now considerably enlarged.... The best book that exists on the subject'—Electrical Review.

Specimen of Illustrations from Bodmer's 'Hydraulics.'

By W. FLETCHER, Mechanical Engineer, Author of 'Steam Locomotion on Common Roads.'

THE STEAM JACKET: Practically Considered.
Second Edition, Revised and Enlarged. With 63 Illustrations. Crown 8vo. 7s. 6d.

CONTENTS:—History of the Steam Jacket—Cylinder Condensation—Means proposed for Preventing Cylinder Condensation—The Abuse of the Steam Jacket—Practical Proofs of the Efficacy of the Steam Jacket, &c., &c.

'It ought to be read not only by engineers, but by steam users.'—Textile Recorder.

'An excellent little book.'—Electrical Review.
'A most excellent work on the subject.'—Steamship.
THE SPECIALISTS' SERIES (Continued).

By OLIVER J. LODGE, LL.D., D.Sc., F.R.S., M.I.E.E.
Professor of Experimental Physics in the University College, Liverpool.

LIGHTNING CONDUCTORS AND LIGHTNING GUARDS. A Treatise on the Protection of Buildings, of Telegraph Instruments and Submarine Cables, and of Electric Installations generally, from Damage by Atmospheric Discharges.

In one volume, with numerous Illustrations. Crown 8vo, 15s.

"How they are essential, and in what manner they may be made most effective, is elaborately shown in the Professor's comprehensive and most instructive treatise, which is the work of one of our best authorities on modern theories of electricity and their practical application. — Times.

"There is probably no one who knows more about lightning conductors than Dr. Lodge." — Industries.

By THOMAS H. BLAKESLEY, M.A., M.Inst.C.E., Hon. Sec. of the Physical Society.

ALTERNATING CURRENTS OF ELECTRICITY.
Third Edition, enlarged. 5s.

"It is written with great clearness and compactness of statement, and well maintains the character of the series of books with which it is now associated." — Electrician.

By STUART A. RUSSELL, Assoc. M.Inst.C.E., M.I.E.E.

ELECTRIC LIGHT CABLES, AND THE DISTRIBUTION OF ELECTRICITY. With 107 Illustrations. 7s. 6d.

"The various systems of main distribution, heating losses, jointing, cost of distribution, testing, safety devices, &c., are dealt with. . . . A book of very great value." — Electrical Review.

A more thorough book could not have been written." — Electrician.
THE SPECIALISTS' SERIES (Continued).

By William Anderson, F.R.S., D.C.L., Member of the Council of the Institution of Civil Engineers, M.I.M.E., and Director-General of Ordnance Factories, Royal Arsenal, Woolwich.

'We have no hesitation in saying there are young engineers—and a good many old engineers, too—who can read this book, not only with profit, but pleasure, and this is more than can be said of most works on heat.'—The Engineer.

'The volume bristles from beginning to end with practical examples culled from every department of technology. In these days of rapid book-making it is quite refreshing to read through a work like this, having originality of treatment stamped on every page.'—Electrical Review.

By G. W. Sutcliffe, M.Inst.C.E. (Whitworth Scholar).

STEAM POWER AND MILL WORK: Modern Practice in. With numerous Tables, Illustrations, &c. Crown 8vo. 21s.

One of the most useful treatises of the kind. 'To students it will be found a most excellent text-book.'—English Mechanic.

'The book will well repay careful study.'—Engineer.

'The work is one which is to be commended to the notice of naval architects and marine engineers.'—Steamship.

By 'A Foreman Pattern Maker.'

HEÇICAL GEARS; A Practical Treatise. By the Author of 'Practical Ironfounding,' 'Metal Turning,' 'The Principles of Pattern Making,' 'The Principles of Fitting.' With 100 Illustrations and Frontisipiece. 7s. 6d.

'To pattern-makers, ironfounders, and engineers generally, we can recommend the perusal of the book.'—Marine Engineer.

'The author has contributed a useful book to machinists.'—Builder.

By D. W. Taylor, Naval Constructor, United States Navy.

RESISTANCE OF SHIPS AND SCREW PROPELLION. With Seventy-three Figures and numerous Diagrams. Medium 8vo. cloth, 15s.

'The book will well repay careful study.'—Engineer.

'A valuable and useful contribution to the literature of the subject. Marine Engineer.'
Whittaker's Technological and Scientific List.

THE SPECIALISTS' SERIES (Continued).

By Gustav May.

BALLOONING: A Concise Sketch of its History and Principles. From the best sources, Continental and English. With Illustrations. 2s. 6d.

‘Mr. May gives a clear idea of all the experiments and improvements in aerial navigation from its beginning, and the various useful purposes to which it has been applied.’—Contemporary Review.

By George Lunge, Ph.D., Professor of Technical Chemistry, Zurich, and Ferdinand Hurter, Ph.D., Consulting Chemist to the United Alkali Co., Limited.

THE ALKALI MAKERS' HANDBOOK. Tables and Analytical Methods for Manufacturers of Sulphuric Acid, Nitric Acid, Soda, Potash, and Ammonia. Second Edition, Enlarged and thoroughly Revised. In crown 8vo., with Illustrations, 10s. 6d.; strongly bound in half leather, 12s.

'The present edition gives abundant evidence that care is being taken to make the book a faithful record of the condition of contemporary quantitative analysis.'

Professor T. E. Thorpe in Nature.

'That excellent book.'—The late Professor W. Dittmar.

'It is an excellent book, and ought to be in the hands of every chemist.'—Professor J. J. Hummel.

By Professor Roberts Beaumont, Director of the Textile Industries Department, The Yorkshire College.

COLOUR IN WOVEN DESIGN. With thirty-two Coloured Plates and 203 Illustrations. 21s.

'An excellent work on the application of colour to woven design.'

Textile Manufacturer.

'The illustrations are the finest of the kind we have yet come across, and the publishers are to be congratulated on the general excellence of the work.'—Textile Mercury.
THE SPECIALIST'S SERIES (Continued).

By A. B. Griffiths, Ph.D., F.R.S. (Edin.), F.C.S.

A TREATISE ON MANURES; or, the Philosophy of Manuring. With Illustrations and Index. A Practical Handbook for the Agriculturist, Manufacturer, and Student. Second Edition, revised and enlarged. Crown 8vo. 7s. 6d.

'The book is very full of matter, and may be recommended.'—Engineer.
'The book is brimful of highly useful information.'—Live Stock Journal.
'We gladly welcome its appearance as supplying a want long felt in agricultural literature, and recommend every farmer and agricultural student to possess himself of a copy without delay.'—Farm and Home.
'We consider this work a very valuable addition to the farm library.'—Saturday Review.

By J. W. Slater, F.E.S., Editor of Journal of Science.

'The writer, in addition to a calm and dispassionate view of the situation, gives two chapters on "Legislation" and "Sewage Patents."'—Spectator.

By W. Lee Beardmore, Assoc. M. Inst. C.E., Member of Council and Hon. Sec. of the Civil and Mechanical Engineers' Society, Author of 'House Drainage Scientifically and Practically Considered,' and 'Compulsory Registration of Certain Buildings as to their Sanitary Efficiency.'

THE DRAINAGE of HABITABLE BUILDINGS. Illustrated. 5s.

'A useful little volume.'—Scotsman.
'"Automatic Flushing" and the notes on the bath are particularly well done.'—National Observer.
'Gives in a small compass a large amount of useful information.'—Industries.

By Captain M. P. Nadiëine.

A new treatise on

SANITARY DRAINAGE and the Treatment of Sewage Matter. Demy 8vo. 1s.
Library of Great Industries.

By C. J. Bowen Cooke, Assistant, London and North-Western Locomotive Department.

6 ft. 6 in. Coupled Engine, L. & N. W. Ry. 'Charles Dickens.'
(Specimen of Illustrations.)

'We congratulate the author on producing a book which will be deservedly successful.'—Railway Engineer.

'This new work constitutes undoubtedly a most valuable addition to railway literature.'—Railway Herald.

'A very attractive and instructive little work.'—Times, Oct. 5th, 1893.

'A most interesting book.'—Nature.

'Interesting and valuable.'—Sun.
Whittaker's Technological and Scientific List.

LIBRARY OF GREAT INDUSTRIES (Continued).

By the late SIR GEORGE FINDLAY, Assoc. Inst. C.E., General Manager of the London and North-Western Railway.

'This is a delightful book.'—Engineer.

'Sir George Findlay's book displays so much knowledge and ability that it well deserves to rank as a standard work on the subject.'—Nature.

'A very interesting work throughout.'—Railway Engineer.

'Sir George Findlay's book will take a high position in the library of practical science.'—Athenæum.

By J. ALEXANDER.

MODEL ENGINE CONSTRUCTION. With Practical Instructions to Artificers and Amateurs. With 59 Illustrations and 21 Sheets of Working Drawings by C. E. Jones. 324 pp. Crown 8vo. 10s. 6d.

CONTENTS:—Part I. Boiler and Engine Details with Tools.—Part II. Different Types of Engines: Stationary, Locomotive, Marine.

Specimen of Illustrations from 'Model Engine Construction.'

'Excellent drawings and ample instructive matter.'—Daily Chronicle.

'An instructive book, which we do not hesitate in recommending to our apprentices and amateurs.'—Railway Herald.

'In this book Mr. Alexander, aided by the drawing of Mr. C. E. Jones, has made things considerably easier for the model maker.'—Engineer.

'This book, besides affording an efficient and comprehensive guide to the construction of model engines of several kinds, is of considerable educational value.'—Morning Post.

'Will be cordially welcomed by all who revel in the fascinating pursuit of model engine-making.'

Prof. W. J. Lineham, in the Technical World.

'A useful little book.—Saturday Review.
LIBRARY OF GREAT INDUSTRIES (Continued).

By R. Nelson Boyd, M.Inst.C.E.

'The story of the development of the great coal industry of the United Kingdom is told in these pages in an interesting manner.'—Engineering.

'Mr. Boyd's well-written and eminently practical book.'—Speaker.

'It cannot fail to prove interesting.'—Daily Chronicle.

'Not only a well-written and fascinating work, but also a valuable history of the legislation and changes which have taken place in the coal industry.'—Industries.

Specimen of Illustrations from Boyd's 'Coal Pits.'

THE ATLANTIC FERRY. With Eighty Illustrations, many of them from scarce prints in the Author's possession. Complete Edition. Crown 8vo. cloth, 7s. 6d.

A Popular Edition, with about 50 Illustrations, 2s. 6d.

'Will furnish passengers with a compendious and authentic history of the development, construction, and organization of the great floating palaces which now conduct the service of the ferry across the Atlantic.'—Times.

'Mr. Maginnis' handsome volume has had a well-deserved success.'—Engineering.

'The work is one of great merit.'—Engineer.

'No one who is interested in steam navigation should be without a copy.'—Marine Engineer.
14 Whittaker’s Technological and Scientific List.

By A. A. Blair, Chief Chemist U.S. Board appointed to Test Iron, Steel, and other Metals, &c.

By James Dredge. Partly Reprinted from ‘Engineering.’

This Volume contains about 190 plates, and 800 pages of text and illustrations, forming, it is believed, a very complete record of the most important objects collected in the Transportation Exhibits Building at the World’s Columbian Exposition of 1893.

Reprinted from ‘Engineering.’

By James Dredge, Dr. M. F. O’Reilly, and H. Vivarez. Reprinted from ‘Engineering.’

By J. R. C. Nicholls, Executive Engineer, Indian P.W.D. Reprinted from ‘Engineering.’

AGRICULTURAL ENGINEERING IN INDIA—IRRIGATION. Cr. 4to. Price 3s.6d. Profusely Illustrated. Weight 10 oz. [Engineering.

By G. M. Born. Reprinted from ‘Engineering.’

METRIC MEASURES AND THEIR ENGLISH EQUIVALENT. Cloth. Price 3s. Weight 8 oz. [Engineering.
Whittaker's Technological and Scientific List.

Reprinted from 'Engineering.'

By WM. H. WILEY and SARA KING WILEY. Reprinted from 'Engineering.'

By JAMES DREDGE. Reprinted from 'Engineering.'

MODERN FRENCH ARTILLERY. (The St. Chamond, De Bange, Canet and Hotchkiss Systems.) With Illustrations of French Warships. The Work is provided with a carefully prepared and copious Index. Imperial 4to. handsomely bound in Half Morocco. Price 2l. 10s. 500 Pages of Text, Tables and Plates, and over 700 Illustrations. Weight 9 lb. 6 oz.

By J. E. TUIT, M.Inst.C.E., Engineer to Sir William Arrol & Co.

THE TOWER BRIDGE: its History and Construction from the Date of the Earliest Project to the Present Time. Profusely Illustrated by C. W. Wyllie and others. Demy 4to. cloth, gilt lettered, 5s.

By W. WESTHOFEN. Reprinted from 'Engineering.'

THE FORTH BRIDGE. Royal 4to. Seventy-two Pages, cloth, gilt lettered. Price 5s. Weight 2 lb. 8 oz. Illustrated by Nineteen Plates and 157 Figures in the Text. Printed throughout on special plate paper.

Reprinted from 'Engineering.'

THE MANCHESTER SHIP CANAL. Illustrated with Four Two-page Plates and numerous Figures in the Text. Printed throughout on special Plate Paper. Royal 4to. 46 pp. Cloth, gilt lettered. Price 3s. 6d.

By J. BUCKNALL SMITH, C.E. Reprinted from 'Engineering.'

A TREATISE UPON CABLE OR ROPE TRACTION as applied to the Working of Street and other Railways. Crown 4to. cloth. Price 5s. With numerous Plates and other Illustrations. Weight 2 lb. 2 oz.

By J. BUCKNALL SMITH, Author of 'Cable Traction,' 'Rope Haulage in Mines,' &c. Reprinted from 'Engineering.'

WIRE: ITS MANUFACTURE AND USES. Crown 4to. cloth. Price 7s. 6d. Profusely Illustrated. Weight 3 lb. 4 oz.

By Lieut.-Colonel BUCKNILL, R.E. Reprinted from 'Engineering.'

SUBMARINE MINING. Roy.8vo. cloth. Price 12s. 6d. With numerous Illustrations. Weight 1 lb. 10 oz.
BY JAMES DREDGE. Reprinted from 'Engineering.'

THE PENNSYLVANIA RAILROAD. Its Organization, Construction and Management; with Folding Map, Eighty-two Plates, 100 Engravings in Text, and 125 Tables. Large Imperial 4to. Price 2l. 12s. 6d. Weight 10 lb. [Engineering.

By 'GUNS.' Reprinted from 'Engineering.'

THE AUTOBIOGRAPHY OF A WHITEHEAD TORPEDO. Cr. 4to. Price 2s. Illustrated. Weight 14 oz. [Engineering.

By S. R. BOTTONE, Author of 'Electrical Instrument Making,' 'Electro-Motors,' 'Electric Bells,' 'The Dynamo,' &c.

A popular guide by a well-known writer, giving in clear and easily understood language the information necessary to those about to introduce the electric light into their dwellings.

'A Accurate, lucid, and suitable for the purpose.'—Electrician.

'The chapter on accumulators is perhaps one of the best in the book.'—Electrical Review.

'A shilling spent on this book will be well repaid.'—Engineer's Gazette.

'Will be found very useful to those desiring elementary knowledge on the subject.'—Iron.

By A. D. SOUTHAM.

ELECTRICAL ENGINEERING AS A PROFESSION, AND HOW TO ENTER IT. Second Ed. Illus. Cr. 8vo. 4s. 6d.

'It gives much valuable information.'—Engineering.

By A. R. BENNETT, M.I.E.E.

By Dr. FREDK. BEDELL and Dr. ALBERT C. CREHORE, of Cornell University.

ALTERNATING CURRENTS. An Analytical and Graphical Treatment for Students and Engineers. 325 pages. With 112 Illustrations. Second Edition. Medium 8vo. cloth, 10s. 6d.

By FRANK B. COX, B.S.

By O. GREGORY, late Professor of Mathematics in the R.M.A., &c.

HUTTON'S MATHEMATICAL TABLES, containing the Common, Hyperbolic, and Logistic LOGARITHMS; also Sines, Tangents, Secants, and Versed Sines, both Natural and Logarithmic. Together with several other Tables useful in MATHEMATICAL CALCULATIONS; also the Complete Design and Use of the Tables. With Seven additional Tables of TRIGONOMETRICAL FORMULE. New Edition. Med. 8vo. cloth, 12s.
By O. T. Crosby and Dr. Louis Bell.

THE ELECTRIC RAILWAY IN THEORY AND PRACTICE. 400 Octavo Pages, 179 Illustrations. Second Edition, Revised. 10s. 6d.

Appendices:—Electric Railway vs. Telephone Decisions—Instructions to Linemen—Engineer’s Log Book—Classification of Expenditures of Electric Street Railways—Concerning Lightning Protection, by Prof. Elihu Thomson.

By Carl Hering.

ELECTRIC RAILWAYS, RECENT PROGRESS IN. About 400 pages, and 120 Illustrations. Price 5s.

Thomson-Houston, W.P. Railway Motor. (Specimen of Illustrations.)

Dynamo and Motor Building for Amateurs. With Working Drawings. With 22 Illustrations. 4s. 6d.

By Wm. Mave, Jun., and Minor M. Davis.

The Quadruplex. With Chapters on the Dynamo-Electric Machine in Relation to the Quadruplex, the Practical Working of the Quadruplex, Telegraph Repeaters and the Wheatstone Automatic Telegraph by W. Mave, Jun. Large 8vo. cloth. With 63 Illus. 6s. 6d.

By H. A. Foster, Mem. Am. Inst. E.E.

Central Station Book-Keeping and Suggested Forms. With an Appendix for Street Railways and numerous Diagrams. 10s. 6d.
By Gisbert Kapp.

Alternating Currents of Electricity,
their Generation, Measurement, Distribution, and Application. With 37 Illustrations and 2 Plates. 45. 6d.

By Philip Atkinson, A.M., Ph.D.

Elements of Static Electricity. With full description of the Holtz and Töpler Machines, and their Mode of Operating. Second Edition, Revised. With 64 Illustrations. 65. 6d.

By Nikola Tesla.

Experiments with Alternate Currents of High Potential and High Frequency. With a Portrait and 35 Illustrations, and Biographical Sketch of the Author. 45. 6d.

By E.J. Houston, Ph.D.

Electricity One Hundred Years Ago and To-Day. With Notes, &c. 45. 6d.

By E.J. Houston, A.M., Professor of Natural Philosophy in the Central High School, Philadelphia; Professor of Physics in the Franklin Institute of Philadelphia; Electrician of the International Electrical Exhibition.

'Fills a very large gap that previously existed in electrical literature.'
A.E. Kennelly (Edison Laboratory).

'The name of the author is a sufficient guarantee of the excellence of the work.'
Electrical Review.

'A book of this kind is absolutely necessary to the general reader who wishes to understand any modern article on applied electricity.'—New York Herald.

By T.D. Lockwood, Electrician, American Bell Telephone Company.

Practical Information for Telephoneists. 192 pages. 45. 6d.

By E.A. Merrill.

Complete Rules for the Safe Installation of Electrical Plant. Electric Lighting Specifications. For the use of Engineers and Architects. With the Phoenix Fire Rules. Price 6s.

By R.W. Weekes, Whit.Sch., A.M.I.C.E.

Alternate Current Transformer Design. 2s.

By N. Scott Russell, M.Inst.C.E.

Town Councillors' Handbook to Electric Lighting. Illustrated. Price 1s.

'Seems to have accomplished the object in view.'—Nature.

'Has done yeoman service in preparing this little book.'—Electrical Engineer.

'A useful and valuable handbook that every town councillor should read.'
Building News.
Whittaker's Technological and Scientific List.

ELECTRICAL DISTRIBUTION: ITS THEORY AND PRACTICE. Illustrated. 10s. 6d.

- 'Mr. Kilgour's treatment of his subjects will commend itself to all who are interested in them.'—Engineer.
- 'An excellent compendium on the subject.'—Electrical Engineer.
- 'Of high interest and usefulness.'—Nature.

By Dr. G. Gore, F.R.S.

THEORY AND PRACTICE OF ELECTRO-DEPOSITION, including every known mode of depositing metals, preparing metals for immersion, taking moulds and rendering them conducting. Illustrated. Crown 8vo. 1s. 6d.

By J. T. Niblett.

PORTATIVE ELECTRICITY. Illustrated. 2s. 6d.

PRACTICAL ELECTRICAL ENGINEERING. Being a complete treatise on the Construction and Management of Electrical Apparatus as used in Electric Lighting and the Electric Transmission of Power. With many Hundreds of Illustrations. 2 Vols. Imperial 4to. 2l. 2s. net.

By H. J. Skelton.

ECONOMICS OF IRON AND STEEL. Illustrated. Crown 8vo. Price 5s.

By Arthur F. Guy, A.M.Inst.C.E.

ELECTRIC LIGHT AND POWER. Giving the Results of Practical Experience in Central Station Work. Illus. Cr. 8vo. 5s.

- 'There are many similar works in the market, but we do not know of one better suited to give the manipulator of electric dynamos an intelligent knowledge of the forces with which he has to deal.'—Nature.

By Alex. Black, C.E.

FIRST PRINCIPLES OF BUILDING. Illustrated. Crown 8vo. 3s. 6d.

By John Imray and C. H. W. Biggs.

FIRST PRINCIPLES OF MECHANICAL ENGINEERING. Illustrated. Crown 8vo. 3s. 6d.

- 'The book will be found useful to learners.'—Engineer.

By C. H. W. Biggs.

FIRST PRINCIPLES OF ELECTRICAL ENGINEERING. Illustrated. Second Edition. Crown 8vo. 2s. 6d.

- 'The first principles of the dynamo are clearly and accurately given.'—Nature.
- 'We commend the book to the perusal of students.'—Electricity.
Whittaker's Technological and Scientific List.

By Capt. IRONSIDE BAX, General Manager of the Westminster Electric Supply Co.

POPULAR ELECTRIC LIGHTING. Illustrated. Crown 8vo. 2s.

By A. RECKENZAUN.

ELECTRIC TRACTION, MORE ESPECIALLY AS APPLIED TO TRAMWAYS. Illustrated. 10s. 6d.

'His book is certainly interesting and instructive.'—Electrical Review.

'The most useful to English readers.'—Engineer.

'Invaluable to electrical engineers commencing traction work.'—Electrical Engineer.

By M. REYNOLDS.

FIRST PRINCIPLES OF THE LOCOMOTIVE. 45 Illustrations. Crown 8vo. 2s. 6d.

'Those who would like to know all about the locomotive will find it in this little book.'—Essex Herald.

By GISBERT KAPP, M.Inst.C.E., M.I.E.E.

DYNAMOS, ALTERNATORS, AND TRANSFORMERS. Crown 8vo. 10s. 6d.

'Invaluable to the advanced student and dynamo designer.'—Electrician.

'We can heartily recommend it.'—Electrical Engineer.

'A valuable contribution to electrical literature.'—Electrical World.

'The reader will find valuable information concerning dynamo design.'—Nature.

By J. A. EWING, M.A., B.Sc., Professor of Mechanism and Applied Mechanics in the University of Cambridge.

MAGNETIC INDUCTION in IRON and OTHER METALS. 370 pages, 159 Illustrations. Second issue. 10s. 6d.

By Dr. GEORGE GORE, LL.D., F.R.S.

THE ART OF ELECTROLYTIC SEPARATION OF METALS (Theoretical and Practical). Fully Illustrated. 10s. 6d.

By CHARLES JONES, M.Inst.C.E.

REFUSE DESTRUCTORS: WITH RESULTS UP TO THE PRESENT TIME. A Handbook for Municipal Officers, Town Councillors, and others. With numerous Diagrams. Cr. 8vo. 5s.

By H. P. BOULNOIS, M.Inst.C.E., Past-President of Municipal and County Engineers; City Engineer, Liverpool.

CONSTRUCTION OF CARRIAGeways AND FOOTWAYS. 5s.

By E. B. SAVAGE, A.M.Inst.C.E.

SEWERAGE AND SEWAGE DISPOSAL of a Small Town. Illustrated. 5s.

By E. PARNELL HOOLEY, A.M.Inst.C.E., County Surveyor of Nottingham.

MANAGEMENT OF HIGHWAYS. 15s.

HIGHWAY BRIDGES. Nearly Ready.
Whittaker's Technological and Scientific List. 21

WATER SUPPLY IN RURAL DISTRICTS. [Nearly Ready.]

STREET and TOWN SANITATION. [Nearly Ready.]

By A. E. Kennelly and H. D. Wilkinson, M.I.E.E.

PRACTICAL NOTES FOR ELECTRICAL STUDENTS. LAWS, UNITS, AND SIMPLE MEASURING INSTRUMENTS. 320 pages, 155 Illustrations. 6s. 6d.

By Magnus Maclean.

ELECTRICAL UNITS. 2s. 6d.

ELECTRIC LAMPS and ELECTRIC LIGHTING.
Being a Course of Four Lectures delivered at the Royal Institution, April—May, 1894. Fully Illustrated. 8vo. cloth, 7s. 6d.

THE ALTERNATE CURRENT TRANSFORMER IN THEORY AND PRACTICE. In two vols. demy 8vo.

Vol. II.—THE APPLICATIONS OF INDUCED CURRENTS. 600 pages, 300 Illustrations. 12s. 6d.

Arranged by J. A. Fleming, M.A., D.Sc., F.R.S.

ELECTRICAL LABORATORY NOTES AND FORMS: Elementary and Advanced. Fcap. folio, cloth, 12s. 6d. net.

By F. Martin Weymouth.

DRUM ARMATURES AND COMMUTATORS (Theory and Practice). A complete treatise on the theory and construction of Drum Winding, and of Commutators for Closed Coil Armatures, together with a full résumé of some of the principal points in their design; and an exposition of Armature Re-actions and Sparking. With 162 Illustrations. Demy 8vo. 7s. 6d.

THE STEAM-ENGINE INDICATOR AND INDICATOR DIAGRAMS. 3s. 6d.
A Practical Treatise on the Steam Engine Indicator and Indicator Diagrams, with Notes on Steam Engine Performances, Expansion of Steam, Behaviour of Steam in Steam Engine Cylinders, and on Gas Engine Diagrams.

By Dr. George Gore, LL.D., F.R.S.

By Oliver Heavyside.

By Professor Oliver Lodge, F.R.S.

THE WORK OF HERTZ AND SOME OF HIS SUCCESSORS. With Appendices, 31 Illustrations, and Portrait. Crown 8vo. 2s. 6d. net.

By W. Geipel and H. Kilgour.

ELECTRICAL ENGINEERING FORMULÆ, &c.
This Pocket-Book is a departure from previous attempts to provide for Electrical Engineers and Electricians varied information for every-day use. The book will be invaluable to Electrical Engineers, a very large space being devoted to heavy engineering details, formulæ, &c. 7s. 6d. net.

By W. S. BoulT.

THE INTERNATIONAL COMPREHENSIVE WIRE TABLE. Cloth, 5s.

In Two Vols. stout paper covers, 2s.; strong cloth, 2s. 6d. each volume;
Single Primers, 3d.

PRIMERS OF ELECTRICITY. Fully Illustrated. A Series of Helpful Primers on Electrical Subjects for the use of Colleges, Schools, and other Educational and Training Institutions, and for young men desirous of entering the Electrical professions.

Whittaker's Technological and Scientific List. 23

SUBMARINE CABLE-LAYING and REPAIRING. An Original Work on this important subject, which has not previously been treated in a thoroughly practical manner. Fully Illustrated. [Shortly.

ELECTRIC MOTIVE POWER. The Transmission and Distribution of Electric Power by Continuous and Alternate Currents, with a Section on the Application of Electricity to Mining Work. 8vo. cloth, 10s. 6d.

THE 'PRACTICAL ENGINEER' POCKET BOOK AND DIARY FOR 1896. Price, bound in leather, 1s.; roan, gilt edges, with pocket and elastic band, 1s. 6d.

The above work is subject each year to a THOROUGH REVISION, and the information brought down to the latest date.

'The rules and data are judiciously selected with a view to practical requirements.'—Engineer.

By Gilbert S. Ram.

THE INCANDESCENT LAMP AND ITS MANUFACTURE. 7s. 6d.

By Chas. H. Innes, M.A., Lecturer on Engineering at the Rutherford College, Newcastle-on-Tyne.

PROBLEMS IN MACHINE DESIGN. For the Use of Students, Draughtsmen, and others. Crown 8vo. cloth, 3s. 6d. net.

'There are many to whom this book will be of service, and it should well fulfil the object the author had in view in writing it.'—Engineer and Iron Trades Review.

By Charles Day, Wh.Sc.

This book is of a thoroughly practical character, and will be found of special value to engineers and inspectors. It contains numerous diagrams from actual practice.

INJECTORS: their Theory, Construction, and Working. Crown 8vo. cloth, 3s. 6d. net.

'This work on the Injector will be found most useful.'—The Steamship.

'This is a capital little work, which may be recommended to all who wish to learn about Injectors and Ejectors.'—English Mechanic.

By Edward C. R. Marks, Assoc.M.Inst.C.E., M.I.M.E.

CRANES AND LIFTING MACHINERY, PRACTICAL NOTES ON THE CONSTRUCTION OF. Crown 8vo. cloth, lettered, 2s. 6d. net.

'The information given is of a practical nature, and such as is often required by engineers and purchasers who wish to have description and particulars regarding the general principles and capabilities of lifting machinery.'—Burnier.
By CHAS. H. INNES, M.A., Lecturer on Engineering at the Rutherford College, Newcastle-on-Tyne.

THE CENTRIFUGAL PUMP, TURBINES AND WATER MOTORS: including the Theory and Practice of Hydraulics (especially adapted for engineers). Crown 8vo. 3s. 6d. net.

'The book will be found of special value to the engineering students preparing for the honours stages of the Science and Art and Technological Examinations in machine construction and mechanical engineering.'—Steamship.

By EDWARD C. R. MARKS, Assoc.M.Inst.C.E., M.I.M.E.

MECHANICAL ENGINEERING MATERIALS.
Crown 8vo. 1s. 6d. net.

By G. CROYDON MARKS, A.M.I.C.E., M.I.M.E., Lecturer on Engineering at the Midland Institute, Birmingham.

HYDRAULIC MACHINERY EMPLOYED IN THE CONCENTRATION AND TRANSMISSION OF POWER. Crown 8vo. cloth, lettered, 3s. net.

'The subject is treated in an eminently practical manner, and the various forms of hydraulic appliances are illustrated and explained.'—The Steamship.

By ALFRED H. GIBBINGS, A.I.E.E., Electrical Engineer to the Corporation of Bradford.

DYNAMO ATTENDANTS and their DYNAMOS.

'Should be useful to those attending to dynamos, both in private installations and in central stations.'—Electrical Engineer.

'A handy little book, containing many useful hints and suggestions.'—Mechanical World.

By JAS. BELL, A.I.E.E., Certificated Teacher City and Guilds of London Institute.

TELEGRAPHIST'S GUIDE TO THE NEW EXAMINATIONS IN TECHNICAL TELEGRAPHY. With between seventy and eighty Diagrams, including a full-page Plan of the Test Box (with twenty practical examples), Duplex (Differential and Bridge Methods), Quadruplex, Multiplex, Connections of Single-needle, Single-current (with and without Relay), Double-current Morse (Simplex and Duplex), Wheatstone Automatic, Repeaters, Tangent Galvanometer (both forms), Battery Testing Instruments, Universal Battery System, Wheatstone Bridge. New System of Morning Testing (six Diagrams), and other Diagrams. Second Edition, Revised. Crown 8vo. cloth. Illustrated. Price 1s. 6d.

Will be found helpful to those preparing for the City and Guilds of London Institute Examinations in Telegraphy.

By JAS. BELL, A.I.E.E., and S. WILSON.

SUBMARINE TELEGRAPHY. A Work dealing with the subject in a thoroughly practical manner and replete with Original Drawings. Crown 8vo. Illustrated. 1s. 6d.
THE MANUFACTURE OF ELECTRIC LIGHT CARBONS. A Practical Guide to the Establishment of a Carbon Manufactory. Fully Illustrated. 1s. 6d.

THE WOODHOUSE AND RAWSON WIRING TABLES. In neat cloth case for pocket, 2s. 6d.

MAY'S POPULAR INSTRUCTOR FOR THE MANAGEMENT OF ELECTRIC LIGHTING PLANT. Pocket size, 2s. 6d.

WOOD'S IMPROVED DISCOUNT TABLES. Fourth Edition. Cloth, 1s.

MAY’S BELTING TABLE. For Office use, printed on cardboard, with metal edges and suspender, 2s. each, post free 2s. 2d. For the pocket, mounted on linen, in strong case, 2s. 6d. each, post free 2s. 8d.

By FREDERICK WALKER, Member of the Society of Civil and Mechanical Engineers.

By the same Author.

TABLES AND MEMORANDA FOR ELECTRICAL ENGINEERS. 2s.

By W. R. P. Hobbs, Head Schoolmaster of the Naval Torpedo School, Portsmouth.

THE ARITHMETIC OF ELECTRICAL MEASUREMENTS. With numerous Examples fully worked. Revised Edition, 1s.

By G. PLANTÉ.

THE STORAGE OF ELECTRICAL ENERGY, and Researches in the Effects created by Currents combining Quantity with High Tension. Translated from the French by PAUL BEDFORD ELWELL. With Portrait and 89 Illustrations. 8vo. pp. vii.–268, cloth, 12s.

By B. H. THWAITE, C.E., F.C.S.

GASEOUS FUEL: INCLUDING WATER GAS. Its Production and Application. 1s. 6d.

By M. POWIS BALE, A.M.I.C.E., Author of 'A Handbook for Steam Users.'

MODERN SHAFTING AND GEARING AND THE ECONOMICAL TRANSMISSION OF POWER. 112 pp. Illustrated. Price 2s. 6d.

'A useful little work, inasmuch as it touches on data regarding things which are too new to be found in the standard works on engineering. It contains only about 100 pages—and as far as it goes is excellent.'—Electrical Review.

'A very useful guide to users of shafting, gearing, pulleys, belts, and other appliances for transmitting power.'—Iron and Steel Trades Journal.
By SYDNEY F. WALKER, M.I.E.E., Assoc. M. Inst. C.E.

COLLIERY LIGHTING BY ELECTRICITY. Cloth, fcap. 4to. 2s. 6d.

Edited by J. LUKIN, B.A.

SCREWS and SCREW-MAKING. With a Chapter on Milling. Crown 8vo. 3s.

By J. LUKIN, B.A.

'This is by far the best treatise ever published.'—Engineer.

By GEORGE BOUSFIELD.

TIMBER MERCHANT and BUILDER'S VADE MECUM, The. Fifth Edition, Revised and Enlarged. 120 pp. 4s.

Comprising forty-six different Tables, relating to all the varied Systems of Measurement and value of Timber, Deals, Flooring, &c., &c.—Thirty-five valuable Rules and Examples for working every conceivable Method of Timber Calculation, &c.—Sixty-three useful Problems, embracing all the points of difficult computation experienced in the Trade—Treatise on Patent Slide Rule, with full directions and examples for working it—Treatise on Timber, embracing every description of Foreign and Home-grown in ordinary use, and how to detect inferiority of quality, &c., &c.—Treatise on Roofs, Stairs, Doors, and Frames, and all classes of Mouldings and Dressed Wood—Specimens of Mouldings and the technical terms for ditto—Table of Technical Terms and Definitions, besides a host of other useful and miscellaneous information, peculiarly adapted to the requirements of the Trade.

Translated from the French of the COUNT DES CARS by C. S. SARGENT,
Professor of Arboriculture in Harvard College, U.S.A.

TREE PRUNING: a Treatise on Pruning Forest and Ornamental Trees. 64 pp. 54 Illustrations. Price 2s. 6d.

'It cannot fail to be useful to all who are interested in the care and growth of woods and plantations.'—Glasgow Herald.

'A very useful handbook, freely illustrated, translated from the work of one of the highest French authorities.'—Agricultural Gazette.

By A. D. WEBSTER, Wood Manager to the Duke of Bedford on the Woburn and other Estates.

PRACTICAL FORESTRY. 120 pp. Price 3s. 6d.

'Mr. Webster has done a good service by the publication of his excellent manual, "Practical Forestry."'—Journal of Horticulture.

"'Practical Forestry" is condensed and practical, is written by a forester who knows what he is talking about, and who is fairly abreast of the times on his subject.'—The Garden.
Whittaker's Technological and Scientific List. 27

By W. Stevenson.

Trees of Commerce. A Practical Manual, giving within reasonable limits, and in a popular form, an account of the trees that yield the staple of the British timber trade. 226 pp. Price 3s. 6d.

'Gives within reasonable limits and in a popular style an account of the trees that yield the staple of that important branch of British commerce, the trade in home-grown and imported timber.'—Contract Journal.

'Gives a simply written, comprehensive, and instructive account of its subject, and will prove useful to young foresters and to men preparing themselves for the timber-trade.'—Scotsman.

Holtzapffel's Turning and Mechanical Manipulation.

Volume I.—Materials, Their Differences, Choice, and Preparation; Various Modes of Working Them, Generally Without Cutting Tools. 300 Woodcuts, price 15s. net.

Volume II.—The Principles of Construction, Action, and Application, of Cutting Tools Used by Hand; and also of Machines Derived from the Hand Tools. 700 Woodcuts, price 20s. net.

Volume III.—Abrasives and Miscellaneous Processes, which cannot be Accomplished with Cutting Tools. 430 Woodcuts, price 22s. net.

Volume IV.—The Principles and Practice of Hand or Simple Turning. 750 Woodcuts, price 22s. net.

Volume V.—The Principles and Practice of Ornamental or Complex Turning. With numerous Practical Examples. 590 Woodcuts, Autotype and other Plates, price 30s. net.

The above work is recommended to Students preparing for Examination in Mechanical subjects. Every volume is a complete treatise, and may be had separately.

By T. Eustace Smith, Barrister-at-law.

How to Patent an Invention Without the Intervention of an Agent. Third Edition, revised and enlarged. 2s. 6d. net.

'This is an excellent little book.'—Builder.

Foden's Mechanical Tables. 5th Edition. Crown 8vo. cloth, 1s. 6d.

By Philip Cреблин, Chartered Accountant.

Bookkeeping. For Commercial, Civil Service, and Evening Classes. With numerous Examples and Questions, and a Glossary of Terms appended. Crown 8vo. cloth, 1s. 6d. A Key, 2s. net.

'An excellent little work.'—Morning Post.

'This is undoubtedly a good book. A valuable feature is the glossary of commercial terms.'—Schoolmaster.

Vol. I.—English-Spanish. 1l. 16s.
Vol. II.—Spanish-English. 1l. 12s.

WERSHOVEN (F. J.), TECHNOLOGICAL DICTIONARY OF THE PHYSICAL, MECHANICAL, AND CHEMICAL SCIENCES. English, German, and Ger.-Eng. 2 vols. cloth. 2s. 6d. each.

By CHARLES SCHOLL.

PHRASEOLOGICAL DICTIONARY OF COMMERCIAL CORRESPONDENCE IN THE ENGLISH, GERMAN, FRENCH, AND SPANISH LANGUAGES. With an Appendix, containing Lists of Commercial Abbreviations, Geographical Names, the Principal Articles of Commerce, &c. Second Edition. In One Volume, Bound in Half Morocco, 1l. 1s.

English-French, English-German, English-Spanish, Bound separately in cloth. Price, 8s. each.

'The book is likely to prove of service to others than business men, the phraseology is so varied and full.'—The Times.

'There is a true business ring in the idiomatic phrases, which constitute so important a feature of the work. It will be a boon to correspondence clerks of all nationalities and in all parts of the world.'—The Daily Chronicle.

By R. NELSON BOYD, M.Inst.C.E., &c.

'A most interesting little book.'—Globe.

'Should be of much interest to all engaged in the petroleum and lamp trade.'—British Trade Journal.

'A readable and intelligible account of a valuable natural product.'— Scotsman.

'This useful little book.'—Industries.

'A valuable little book.'—Reynolds.

'If this little volume had a wide circulation, petroleum accidents would be few and far between.'—Daily Chronicle.

'A very interesting little handbook.'—Electrical Review.

'We have here a most useful manual of the origin, composition, properties, and uses of mineral oils.'—Chemical News.

'We can recommend this little book.'—Electrician.

Library Edition, 5l. 5s. net.

ARMORIAL FAMILIES. Compiled and Edited by ARTHUR CHARLES FOX-DAVIES. With Engraved Plates of Armorial Bearings amounting to 600. Full prospectus and subscription forms on application.

'Mr. Fox-Davies, we need scarcely say, is an authority on heraldry, and the sumptuous work which he has just published on 'Armorial Families,' is of a kind, not merely to sustain, but to extend his reputation.'—Standard.

'A perfect treasure-house of art.—Liverpool Mercury.

Half morocco, 4l. 4s.
Artificers’ Edition, specially bound in pigskin, 3l. 13s. 6d. net.
Buckram Edition, 3l. 3s. net.

Full prospectus post free on application.

“As heraldry is really a most interesting and valuable handmaid to history and to a variety of archaeological pursuits, we welcome this book in its revised form.”

Athenaum.

3l. 3s. net. Strongly Half-bound, 3l. 10s.

The Book of Public Arms; A Cyclopaedia of the Armorial Bearings, Heraldic Devices, and Seals, as Authorised and as Used, of the Counties, Cities, Towns, and Universities of the United Kingdom. Derived from the Official Records. Edited by A. C. Fox-Davies, Editor of ‘Fairbairn’s Book of Crests,’ &c., and M. E. B. Crookes.

“Such a work can hardly fail to be of the greatest local interest, as well as of permanent national value.”—Daily Telegraph.

Edited, with Notes and Historical Introduction, by S. Baring Gould, M.A.

English Minstrelsie: a National Monument of English Song. With Airs in both Notations. Eight volumes, 10s. each. Sold in Sets only (Vols. I. to IV. now ready).

Edited and Arranged by John Greig, Mus.Doc.

Edited by Joseph Parry, Mus.Doc.

By Algernon S. Rose, F.R.G.S.

Talks with Bandsmen. Profusely Illustrated.

400 pp. crown, paper covers, 2s. 6d.; cloth, 3s. 6d.

This book has been written to meet a widely expressed want, more especially in the Midlands and North of England, where no work containing those facts which every bandsman desires to know can be obtained at a popular price. ‘Talks with Bandsmen’ contains interviews with many prominent wind-instrument players, and not only gives the history of the evolution of metal instruments from the most primitive times to the present day, but the book describes the author’s experiences when visiting the leading brass-instrument makers in this country. The whole is brimful of humorous bandsmen's stories.

“It is emphatically the most valuable work extant dealing with the subject.”

Saturday Review.
Students' Text Books.

By J. T. HEWITT, M.A., D.Sc., Ph.D., F.C.S., Professor of Chemistry, and
F. G. POPE, Assistant Lecturer and Demonstrator in the People's Palace
Technical Schools.

**ELEMENTARY PRACTICAL CHEMISTRY, In-
organic and Organic. Limp cloth, 9d. net.
'This little book will certainly rank amongst the best in the market.'—Teachers' Aids
'Excellenty arranged.'—Board Teacher.
'The arrangement is clear, and the typical analyses are an excellent feature of the
work.'—Educational Times.
'Will certainly become popular in practical chemistry circles.'—Practical Teacher.

By MATTHEW WYATT, F.R.G.S., F.I.I., Author of 'A Treatise on
Linear Perspective,' &c.

**DIFFERENTIAL and INTEGRAL CALCULUS:
An Introduction to the. For the use of Students reading without the aid
of a Tutor. Crown 8vo. 3s. 6d.
'Mr. Wyatt explains the fundamental principles in such a simple manner, any one
with a little trouble could, in a short time, learn sufficient from his book for most
practical purposes.'—Builder.
'That at first the Calculus does present to the mind of the ordinary student great
difficulties will, we think, be generally admitted, and the way in which Mr. Wyatt
smoothes these over is indeed a work of art.'—Railway Engineer.

Principal of the Battersea Polytechnic Institute.

**MECHANICAL LABORATORY WORK, Notes
and Experiments in. 8vo. 10d. net.

By HENRY ADAMS, M.Inst.C.E., M.Inst.M.E., F.S.I., Professor of
Engineering at the City of London College.

**PRACTICAL TRIGONOMETRY. For the Use of En-
gineers, Architects, and Surveyors. 2s. 6d. net.

CONTENTS:—Angular Measurements—Principles of Trigonometry—
Construction and Use of Logarithms—Trigonometrical Formulae—Practical
Examples.

By HENRY ADAMS, M.Inst.C.E., M.Inst.M.E.,
Professor of Engineering at the City of London College.

**JOINTS IN WOODWORK. A Paper read before the
Civil and Mechanical Engineers' Society, containing information upon
the Varieties, Properties, Market Sizes, &c., of Timber, the Principles of
Designing Joints, the Form and Arrangement of Joints and Fastenings,
Proportions of Bolts, Strength of Fastenings, &c. Third Edition. Sixth
Thousand. Demy 8vo. 44 pp. with Large Plate of 80 Joints, 1s.
'This unpretentious little pamphlet is an excellent treatise on a subject rarely dealt
with in so small a compass.'—Technical World.
'Replete with solid information in a compact form.'—Cabinet Maker's Guide.
'The paper may be read with advantage by all students of wood or timber
construction.'—Building News.
Whittaker's Library of Arts, Sciences, Manufactures, and Industries.

"Messrs. Whittaker's valuable series of practical manuals."

Electrical Review.

By W. Perren Maycock, M.I.E.E.

FIRST BOOK OF ELECTRICITY AND MAGNETISM. Second Edition, Revised and Enlarged, with 107 Illustrations. 2s. 6d.

"It is pre-eminently a practical book by a practical teacher."
Educational News.

"This is a capital book to place in the hands of beginners in the study of electricity and magnetism."—Electricity.

"An admirable work."—Board Teacher.

Specimen of Illustrations from Maycock's 'Electricity and Magnetism.'

By the same Author.

ELECTRIC LIGHTING AND POWER DISTRIBUTION. An Elementary Manual for Students preparing for the Preliminary and Ordinary Grade Examination of the City and Guilds of London Institute. Written in accordance with the new Syllabus. Third edition, thoroughly revised and enlarged in 2 Volumes. Vol. I. ready, with 231 Illustrations, 6s. (Copies of the Second Edition may still be had in 1 Vol., price 6s.)

"We can congratulate Mr. Maycock upon having produced a book which cannot fail to be useful to all who are genuine students of electricity and its methods."—Electrical Review.
FITTING, THE PRINCIPLES OF. For Engineer Students. By J. Horner, M.I.M.E., Author of 'The Principles of Pattern Making,' 'Practical Ironfounding,' and 'Metal Turning.' Illustrated with about 250 Engravings, and containing an Appendix of Useful Shop Notes and Memoranda. 5s.

'A practical manual for practical people.'—English Mechanic

'Calculated to aid and encourage the most useful set of handicraftsmen we have amongst us.'—Daily Chronicle.

THE PRINCIPLES OF PATTERN MAKING.
Written specially for Apprentices, and for Students in Technical Schools. By J. Horner, M.I.M.E., Author of 'Principles of Fitting,' 'Practical Ironfounding,' 'Metal Turning,' &c. Illustrated with 101 Engravings, and containing a Glossary of the Common Terms employed in Pattern Making and Moulding. 3s. 6d.

'The book is well illustrated and for its size will be found one of the best of its kind.'—Industries.

'This is one of those works which have a more than ordinary value.'—Steamship.
PRACTICAL IRONFOUNDING. By J. HORNER, M.I.M.E., 'a Foreman Pattern Maker.' Illustrated with over 100 Engravings. Second Edition. 4s.

'Every pupil and apprentice would find it, we think, an assistance to obtaining a thorough knowledge of his work. The book, however, is not intended merely for the student, but contains much useful information for practical men.'

METAL TURNING. By J. HORNER, M.I.M.E. With 81 Illustrations. Second Edition. 4s.

'A handy little work.'—Ironmonger.

'An exceedingly useful publication to have at hand.'—Machinery.

'The book does well what it professes to do, its aim being to explain and illustrate the practice of plain hand turning and slide-rest turning as performed in engineers' workshops.'—Industries.

By G. E. Bonney.

ELECTRICAL EXPERIMENTS. With 144 Illus. 2s. 6d.

'This is an excellent book for boys.'

Electrical Review.

Electrical Chimes.

Specimen of Illustrations in 'Electrical Experiments.'
Whittaker's Technological and Scientific List.

Whittaker's Library of Arts, Sciences, &c. (Continued).

By G. E. Bonney.

INDUCTION COILS. A Practical Manual for Amateur Coil-makers. With 101 Illustrations. 3s.

"In Mr. Bonney's useful book every part of the coil is described minutely in detail, and the methods and materials required in insulating and winding the wire are fully considered." — Electrical Review.

Sectional Diagram of Coil Winder (Specimen of Illustrations).

By G. E. Bonney.

"An amateur could not wish for a better exposition of the elements of the subject... The work has an excellent index and 61 illustrations, and will form a useful addition to Messrs. Whittaker's valuable series of practical manuals." — Electrical Review.

"The work is of evident utility, and has before it a future." — Chemical News.

"It contains a large amount of sound information." — Nature.

By H. Orford.

LENS WORK FOR AMATEURS. With numerous Illustrations. Small crown 8vo. 3s.

"The book is a trustworthy guide to the manufacturer of lenses, suitable alike for the amateur and the young workman." — Nature.

"The author is both a sound practical optician and is able to convey his knowledge to others in a clear manner." — British Journal of Photography.

MODERN OPTICAL INSTRUMENTS. By the same Author. 2s. 6d.
Whittaker's Library of Arts, Sciences, &c. (Continued).

By J. Traill Taylor, Editor of 'The British Journal of Photography.'

THE OPTICS OF PHOTOGRAPHY AND PHOTOGRAPHIC LENSES. With 68 Illustrations. 3s. 6d.

'An excellent guide, of great practical use.'—Nature.

'Personally we look upon this book as a most valuable labour-saving invention, for no questions are so frequent, or take so long to answer, as those about lenses.'—Practical Photographer.

'Written so plainly and clearly that we do not think the merest tyro will have any difficulty in mastering its contents.'—Amateur Photographer.

THE PRACTICAL TELEPHONE HAND-BOOK.
With 228 Illus. Second Ed. Revised and considerably Enlarged. 5s.

The gratifying reception accorded this book now enables the author to issue a new edition in a considerably enlarged form. New chapters on Metallic-Circuit Working and on Electrical Measurements have been added, the former in order to keep pace with the rapid advance which has been made in that direction during late years, and the latter in order to make the book more complete.

From the Preface.

'This essentially practical book is published at an opportune moment.'—Electrician.

'It contains readable accounts of all the best-known and most widely used instruments, together with a considerable amount of information not hitherto published in book form.'—Electrician.

'Will be found both useful and interesting to persons who use the telephone, as Mr. Poole's exposition of telephonic apparatus is both clear and comprehensive.'—Saturday Review.

The Hunnings Transmitter.
(Specimen of Illustrations).

'It would be difficult to find a more painstaking writer when he is describing the conditions of practical success in a field which he has himself thoroughly explored.'—Electrician.

'Mr. Walker's book is evidently the work of a practical man who has had much experience. . . . The practical hints are likely to be of solid value.'—Saturday Review.

'The work is a valuable contribution to the literature of electrical science in its more practical forms.'—Iron and Coal Trades Review.
ENGINEER DRAUGHTSMEN'S WORK. By a Practical Draughtsman. With 80 Illustrations, 1s. 6d.

By D. DENNING.

THE ART AND CRAFT OF CABINET MAKING.

A Practical Handbook to the Construction of Cabinet Furniture, the Use of Tools, Formation of Joints, Hints on Designing and Setting Out Work, Veneering, &c. With 219 Illustrations. 5s.

'Ve heartily commend it.'—Cabinet Maker.

'Well planned, and written in a pleasing and simple style.'—Nature.

'A carefully-considered and well-written book.'—Work.

By F. C. ALLSOP, Author of 'The Telephones and their Construction.'

'Specimens of Illustrations.'

'A book we have every confidence in recommending.'—Daily Chronicle.

'A highly practical and useful book.'—Lightning.

'The book is certainly very complete.'—Electrical Review.
Whittaker's Library of Arts, Sciences, &c. (Continued).

By J. Hopkinson, D.Sc., F.R.S.

Dynamo Machinery, Original Papers On. With 98 Illustrations, 5s.

'须 prove of great value to the student and young engineer.'—*Electrical Review.

'A most valuable work.'—*English Mechanic.

By S. R. Bottone.

'To those about to study electricity and its application this book will form a very useful companion.'—*Mechanical World.

(Specimen of Illustrations.

By S. R. Bottone.

Third Edition, revised and enlarged. 3s.

'Mr. Bottone has the faculty of writing so as to be understood by amateurs.'—*Industries.

'The explanations are very clear and readily understood.'—*Marine Engineer.

'We are certain that the knowledge gained in constructing machines such as described in this book will be of great value to the worker.'—*Electrical Engineer.

Armature of Alternating Current Motor (Specimen of Illustrations)
Whittaker's Library of Arts, Sciences, &c. (Continued).

By S. R. Bottoni.

ELECTRIC BELLS, AND ALL ABOUT THEM. A Practical Book for Practical Men. With more than 100 Illustrations. Fifth Edition, revised and enlarged. 3s.

'Any one desirous of undertaking the practical work of electric bell-fitting will find everything, or nearly everything, he wants to know.'—Electrician.

'No bell-fitter should be without it.'—Building News.

By S. R. Bottoni.

THE DYNAMO: How Made and How Used. Ninth Edition, with additional matter and illustrations. 2s. 6d.

HOW TO MANAGE A DYNAMO. By the same Author. Illustrated. Pott 8vo. cloth. Pocket size. 1s.

'This little book will be very useful.'—Electrical Engineer.

'The book should prove extremely useful.'—Electrical Review.

'We heartily commend it to the notice of our readers.'—Electricity.

By Sir David Salomons, Bart., M.A., Vice-President of the Institution of Electrical Engineers, &c.

'We advise every man who has to do with installation work to study this work.'—Electrical Engineer.

'To say that this book is the best of its kind would be a poor compliment, as it is practically the only work on accumulators that has been written.'—Electrical Review.

'Will be found very valuable to those owning or having charge of installations.'—Industries.

By J. Gray, B.Sc.

ELECTRICAL INFLUENCE MACHINES: Containing a Full Account of their Historical Development, their Modern Forms, and their Practical Construction. 4s. 6d.

'This excellent book.'—Electrical Engineer.

'We recommend the book strongly to all electricians.'—Electrical Plant.

By Edwin J. Houston, A.M., Professor of Natural Philosophy and Physical Geography in the Central High School of Philadelphia, Professor of Physics in the Franklin Institute of Pennsylvania, &c.

ADVANCED PRIMERS OF ELECTRICITY.
Vol. I.—ELECTRICITY AND MAGNETISM. 3s. 6d.
Vol. II.—ELECTRICAL TRANSMISSION OF INTELLIGENCE. 5s.
Vol. III.—ELECTRICAL MEASUREMENTS. 5s.

Square crown 8vo. cloth, 2s. 6d. per vol.

A Series of easy introductions to the Physical Sciences, suitable for general use.

ELECTRICITY AND MAGNETISM. By S. Bottone. With 103 Illustrations. 2s. 6d.

GEOLOGY. By A. J. Jukes-Browne, F.G.S. With 95 Illustrations. 2s. 6d.

'An excellent guide to the rudiments of the science.'—Athenæum.

'The book is a good one.'—Nature.

PICTORIAL ASTRONOMY. By G. F. Chambers, F.R.A.S. With 134 Illustrations. Second Edition, revised. 2s. 6d.

'One of the most interesting popular treatises that we have had in our hands for a long time.'—Daily Chronicle.

'An elegantly printed and profusely illustrated work, which is worthy of the author's reputation.'—Athenæum.

LIGHT. By Sir H. Trueman Wood. With 85 Illustrations. 2s. 6d.

'We have here a popular and interesting résumé of many of the facts relating to the nature and properties of light.'—Nature.

'It's easy style, intelligible language, good arrangement, and many illustrations, give it a high rank among books of its kind.'—Scotsman.

MINERALOGY: The Characters of Minerals, their Classification and Description. By F. H. Hatch, Ph.D. With 115 Illustrations. 2s. 6d.

'Dr. Hatch has admirably united brevity and clearness in his treatment of the crystallographical and physical characters of minerals.'—Nature.

'We cordially recommend this little book of Dr. Hatch's as one of the best that students could purchase.'—Science Gossip.

PUBLISHED FIRST DAY OF EACH MONTH.
Price 2s. 6d. net.

Medical Works.

By C. J. S. Thompson.

THE CHEMIST'S COMPREHENDIUM AND DIARY.

Blue cloth. 238 pp. 2s. 6d. net.

A New and Revised (Twelfth) Edition. Post 8vo. 10s. 6d.

HOBLYN'S DICTIONARY OF TERMS USED IN MEDICINE AND THE COLLATERAL SCIENCES. Revised and Enlarged by J. A. P. Price, B.A., M.D. Oxon., Assistant-Surgeon to the Royal Berkshire Hospital; late Physician to the Royal Hospital for Children and Women.

'This well-known work.'—Lancet.

'As a handy reference volume for the physician, surgeon, and pharmacist, it will prove invaluable.'—Pharmaceutical Journal.

'From considerable experience of Hoblyn's Dictionary, we are able to say that it has the rare merit of supplying in almost every case what you have a right to expect in consulting it.'—Glasgow Medical Journal.
A NEW WORK FOR MEDICAL STUDENTS AND PRACTITIONERS.

By C. Gordon Brodie, F.R.C.S., late Senior Demonstrator of Anatomy, Middlesex Hospital Medical School; Assistant Surgeon, North-West Lon. Hospital.

In Four Parts:—

Part I. THE UPPER LIMB. 8s. 6d. Part III. HEAD, NECK, & THORAX. 10s.

" II. THE LOWER LIMB. 10s. " IV. ABDOMEN. 10s."

'A book which will certainly make its influence felt in the teaching of anatomy in this country.'—British Medical Journal.

'The plates are exceedingly well drawn and placed on the stone... The explanatory letterpress is clear and concise.'—The Lancet.

'This work meets a distinct want.'—Edinburgh Medical Journal.

'The scheme is admirably carried out and the plates most reliable.'

'This very useful anatomical atlas.'—Hospital. Guy's Hospital Gazette.

'The student will be in possession of an excellent atlas of anatomy.'

Medical Press.

'Students will find this an invaluable hand-book. The plates are drawn so clearly, and they are so large that the muscles, vessels, and nerves of each dissection can be found without any difficulty.'—Nature.

'They will furnish to many professional men a very valuable work of reference.'—Glasgow Medical Journal.

'No hospital library should be considered complete unless it contains at least one copy of this valuable work.'—Nursing Record.

Just Published, Super Royal 4to. cloth. Price 16s. net.

ATLAS OF THE HUMAN BRAIN and DESCRIPTION OF THE COURSE OF THE NERVE-FIBRES. By Dr. E. Flatau, with Preface by Professor Mendel, of Berlin. Translated by Wm. Nathan, M.D., and John H. Carslaw, M.D.

The ever-increasing importance of the anatomy of the brain to physiology and pathology, as well as to the treatment of cerebral diseases, renders it all the more necessary to have good illustrations of the brain surface and of sections through it. This object has been attained by the reproduction of photographs of the brain, taken in its fresh condition, unaltered by any preserving fluid, and true to nature in details and in size.

There has, also, been added a series of lithographed diagrams of the course of the fibres in the central nervous system, and a description of the various 'paths' or 'tracts,' which contains references to the most recent authorities, and extends to 25 pp. 4to.

The plates are, in the main, photogravures, and have been prepared with great care by a well-known Berlin firm. The completeness of the collection may be judged from the following list:—

I. Base of the brain (including blood vessels).
II. Entire view from above.
III. Horizontal section through the entire brain (view of the ventricles).
IV. Horizontal section at lower level (central ganglia, internal capsule, &c.).
V. The outer aspect of the left hemisphere (with pons, medulla, &c.).
VI. Fig. A. Vertical section before the chiasma.

Fig. B. Vertical section behind the chiasma (entrance of the peduncle into the brain).

VII. Fig. A. The inner aspect of the left hemisphere (with a median section through the cerebellum, pons, and medulla).

Fig. B. Peduncles, pons, medulla, and surrounding region (floor of the IV. ventricle, corp. quadrigemina, optic thalamus, and nucleus caudatus).

VIII. Fig. A. Sagittal — oblique section through the whole brain (central cerebral ganglia, corona radiata).

Fig. B. Sagittal — oblique section more lateral.

IX. Thirteen diagrams, indicating in various coloured lines the course of the different nerve-fibres.
Books for Technological and Manual Training Classes.

'THE ENGLISH SLOYD.'

MANUAL INSTRUCTION—WOODWORK. By S. BARTER, Organizer and Instructor of Manual Training in Woodwork to the London School Board and Organizing Instructor to the Joint Committee on Manual Training in Woodwork of the School Board for London, the City and Guilds of London Technical Institute, and the Worshipful Company of Drapers. With a Preface by GEORGE RICKS, B.Sc. Lond. Illustrated by 303 Drawings and Photo-Engravings. Fcap. 4to. cloth, 7s. 6d.

The above Work covers the Requirements of the Examinations of the City and Guilds of London Institute and the Science and Art Department in the subject.

SIR PHILIP MAGNUS says:—'Mr. Barter, in his book on "Woodwork," has succeeded in showing, what is most important, the educational value of manual training in school instruction, and has thus rendered a great service to those seeking a trustworthy guide in the practical study of the subject.'

J. H. REYNOLDS, Esq., Director and Secretary Municipal Technical Schools, Manchester, says:—'One of the best, if not the best book, that has hitherto been published on this subject, whether English or American.'

PROFESSOR W. RIPPER, of Sheffield Technical School, says:—'Mr. Barter, by his ability, experience, and success as an instructor of manual training classes, is the right man to write a book on woodwork, and the book he has produced is a most valuable addition to our literature on manual training—in fact, so far as I am aware, it is the most complete and satisfactory work, as a course of instruction for schools, yet published in this country.'

By S. BARTER, Author of 'Manual Instruction—Woodwork.'

MANUAL INSTRUCTION — DRAWING CLASSES. Showing the application of Geometrical Drawing to Manual Instruction in Wood and Metal. To cover the requirements of the City and Guilds of London Examination. 32 plates with 98 subjects, cloth. Foolscape 4to, 3s. 6d.

BY CHARLES G. LELAND, M.A.

DRAWING AND DESIGNING. In a Series of 29 Lessons. With 42 Illustrations. Second Edition. Fcap. 4to. sewed, 1s.; cloth, 1s. 6d.

'It has a good equipment of plates, and the text is full of valuable practical directions for beginners.'—Scotsman.

'Mr. Leland upholds the principle that drawing and designing should go together, and maintains that inventive powers are cramped by the system of teaching which requires a high standard of manipulative skill before the student is instructed in design. In this we entirely agree with him.'—Literary World.

'The book deserves the widest success,'—Scottish Leader.

'The system is simplicity itself.'—Liverpool Daily Post.

By the Same Author.

Fcap. 4to. 5s.
"An excellent manual."
Morning Post.
"An admirable little book."
Builder.
"Such patient, explicit, step-by-step teaching as Mr. Leland's is indeed the only road to excellence."
Saturday Review.
"A very useful book."
—Mr. W. H. Howard, Secretary to the Institute of British Wood Carvers, and Instructor at King's College, London.
"A splendid help for Amateurs and those beginning the trade. Without exception it is the best book I have read at present.—Mr. T. J. Parrim, Society of Arts Medallist, Instructor in Wood-carving at the People's Palace.
"I consider it the best manual I have seen."
—Miss Hodgson, Instructor in Wood-carving at Manchester Technical School.

Initial Letter (Specimen of Illustrations).

A Companion Volume to 'Wood-Carving,' by the Same Author.

"A delightful addition to the series of practical manuals."
—Times.

By the Same Author.

METAL WORK. Including Repoussé, Bent or Strip Work, Cut Sheet Metal Work, Nail or Knob, Wire, Easy Silver Ornament and Chasing Work. An Elementary Manual for Learners. With numerous Illustrations. 5s.

By the Same Author.

Modern Printing. A Treatise on the Science and Practice of Typography. 1 vol. 8vo. cloth, 10s.; Quarterly Sections, 2s. 6d. each; Monthly Parts, 1s. each.

A LARGE-PAPER EDITION, LIMITED to 500 COPIES, CROWN 4TO. 21s.

[In the Press.

By C. T. Jacobi.

Questions in Typography, Set from 1890 to 1895 inclusive at the Examinations of the City and Guilds of London Institute for all Grades. Paper cover, 8vo. 6d.

By Florence B. Jack, Head Teacher of Laundry Work, Edinburgh School of Domestic Economy.

Laundry Work. The Art of; Practically Demonstrated for use in Homes and Schools. With many Illustrations. Post 8vo. 2s.

By Mrs. Charles Marshall, Author of ‘Gas Cookery.’

Grandmama’s Cakes: A Book of Recipes. Fcap. 8vo. paper cover, 1s.

All the recipes in ‘Grandma’s Cakes’ are genuine old-fashioned ones, and were originally collected in manuscript form by my grandmother, who was famous for the good things at her table.’—From Preface.

Industrial Instruction. A Pedagogic and Social Necessity. By R. Seidel, Mollis, Switzerland. Crown 8vo. cloth, 2s. 6d.

The Durham University Calendar and Almanac. Published annually in January. Cr. 8vo. cloth, 1s. 6d. net.

Programme of Technological Examinations of the City and Guilds of London Institute. Including Regulations for the Registration and Inspection of Classes in Technology and Manual Training, Syllabus of Instruction and Lists of Works of Reference in each Subject, this year’s Examination Questions, Names of Teachers of Registered Classes, &c. Published annually in August. 1od. net; post free, 1s. 1d.

INDEX.

ACCUMULATORS, Salomons', 5s. and 6s. 4-38
--- Plante, 12s. 25
Adams' Joints in Woodwork, 12s. 30
--- Pract. Trigonometry, 2s. 6d. net 30
Agricultural Engineering in India, 3s. 6d. 14
Alexander's Model Steam Eng., 10s. 6d. 12
Alkali Makers' Handbook, 10s. 6d. 9
Alliso's Electric Light Fitting, 5s. 36
Alternating Currents, Blakesley, 5s. 7
--- Bedell and Crehore, 10s. 6d. 16
--- Experiments, Tesla, 4s. 6d. 18
--- Fleming, 3 vols. 25s. 21
--- Kapp, 4s. 6d. 18
Alternate Current Transf. Design, 2s. 18
Analysis, Iron, Blair, 16s. 14
--- Steel Works, Arnold, 10s. 6d. 2
Anatomy, Brodie, 4 parts, or 1 vol. 41
Anderson's Heat, 6s. 8
Arithmetic, Electrical, 12s. 28
Armorial Families, 5s. 5s. 28
Arnold's Steel Works, Analysis, 10s. 6d. 2
Artillery, Modern French, 50s. 15
Astronomy, Chambers, 2s. 6d. 39
Atkinson's Static Electricity, 6s. 18
Atlantic Ferry, 7s. 6d. and 2s. 6d. 13

BALLOONING, May, 2s. 6d. 9
Bale's Mod. Shafting and Gearing, 2s. 6d. 25
Barter's Drawing 42
--- Woodwork, 7s. 6d. 42
Battle of Port Said, 12s. 15
Bax's Electric Lighting, 2s. 6d. 20
Beardmore's Drainage, 5s. 10
Beaumont's Woven Design, 21s. 9
--- Steam Engine Indicator, 3s. 6d. 22
Bedell and Crehore's Alternating Currents, 10s. 6d. 16
Bell's Submarine Telegraphy, 12s. 6d. 24
--- Telegraphist's Guide, 12s. 24
Bennett's Telegraphing, 12s. 16
Bigg's Electrical Engineering, 2s. 6d. 19
Black's First Prin. of Building, 3s. 6d. 19
Blair's Analysis of Iron, 16s. 14
Blakesley's Alternating Currents, 5s. 7
Bodmer's Hydraulics, 14s. 6
--- Railway Material Inspection 1
Bonney's Electrical Experiments, 2s. 6d. 33
--- Electro-platers' Hand-book, 3s. 34
--- Induction Coils, 3s. 34
Book-keeping, Crellin, 12s. 6d. Key, 2s. 27
Book of Crests, 3l. 32. 29
--- Public Arms, 3l. 32. net 29
Born's Metric Measures, 3l. 14
Botany, Massie, 2s. 6d. 39
Bottone's Electric Instrument Making, 3s. 37
--- Electric Bells, 3s. 38
--- Electro-Motors, 3s. 37

Bottone's Electricity, 2s. 6d. PAGE 39
--- Electric Light Guide, 12s. 16
--- How to Manage a Dynamo, 12s. 38
--- The Dynamo, 2s. 6d. 38
Boulnois' Carriageways, &c. 5s. 20
Boul'ts Wire Table, 5s. 22
Boustfield's Timber Merchants' V.M. 4s. 26
Boyd's Coal Pits, 7s. 6d. 13
--- Petroleum, 2s. 28
Brain, Flattau's Atlas of, 16s. net 41
British Locomotives, Cooke, 7s. 6d. 11
Brodie's Dissections, 3l. 32. 41
Browne's (Jukes) Geology, 2s. 6d. 39
Bucknill's Submarine Mining, 12s. 6d. 15
Building, Black, 3s. 6d. 19

CABINET Making, 5s. 36
Cakes, Marshall, 12s. 44
Calculus, Diff. and Intg., 5s. 6d. 30
Cambrian Minstrelsy, 2l. 11s. 29
Carriage Footways Construction, 5s. 30
Central Station Bookkeeping, 10s. 6d. 17
Centrifugal Pumps, &c. Innes, 3s. 6d. 24
Chambers' Astronomy, 2s. 6d. 39
Chemistry, Elementary Practical, 6d. net 30
Chemist's Compendium, 2s. 6d. net 40
City and Guilds Exam. Programme, 10d. net; 1s. ld. post free 44
Coal Pits, Boyd, 7s. 6d. 13
Colliery Lighting, 2s. 6d. 26
Colour in Woven Design, 21s. 9
Cooke's Locomotives, 7s. 6d. 11
Cox's Cont. Current Dynamos, 7s. 6d. 16
Cranes and Lifting Mach., Marks, 2s. 6d. 23
Crehore and Bedell's Alternating Currents of Electricity, 10s. 6d. 16
Crellin's Bookkpg., 12s. 6d.; Key, 2s. net 27
Crests, Fairbairn, 3l. 32. 29
Crosby and Bell's The Electric Railway, 10s. 6d. 17
Cunarders (New), 6s. 14

DAY'S The Indicator, 4s. 6d.... 23
Denning's Cabinet Making, 5s. 36
Designing, Leland, 12s. 42
Dictionaries, Technological 28
Discount Tables, 12s. 25
Dissections Illustrated, Brodie
--- 1 Vol. 2s. 6d., or
Part I., 8s. 6d. Part II., 10s.
Part III., 10s. Part IV., 10s.
Drainage, Beardmore, 5s. 10
--- Nadéine, 12s. 20
Drawing and Designing, 12s. 42
--- Barter 12s. 42
Dredge's Chicago Exhibition, 3l. 32. 14
Whittaker's Technological and Scientific List.

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredge's Electric Illumination. Vol. I., 30s.</td>
<td>14</td>
</tr>
<tr>
<td>Modern French Artillery, 50s.</td>
<td>15</td>
</tr>
<tr>
<td>Pennsylvania Railway, 52s. 6d.</td>
<td>16</td>
</tr>
<tr>
<td>Drum Armatures, 7s. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>Durham University Calendar, 12. 6d. net</td>
<td>44</td>
</tr>
<tr>
<td>Dynamo, Bottone, 25. 6d.</td>
<td>38</td>
</tr>
<tr>
<td>Building, Walker, 22.</td>
<td>25</td>
</tr>
<tr>
<td>Parkhurst, 42. 6d.</td>
<td>17</td>
</tr>
<tr>
<td>Gibbige, 12.</td>
<td>24</td>
</tr>
<tr>
<td>Hawkins and Wallis, 10s. 6d.</td>
<td>2</td>
</tr>
<tr>
<td>How to Manage, Bottone, 12.</td>
<td>38</td>
</tr>
<tr>
<td>Machinery, Hopkinson, 52s.</td>
<td>37</td>
</tr>
<tr>
<td>&c., Kapp, 10s. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>Dynamos, Continuous Current, 7s. 6d.</td>
<td>16</td>
</tr>
<tr>
<td>EDUCATION, Practical, 6s.</td>
<td>43</td>
</tr>
<tr>
<td>Egleston's Metallurgy, 2 vols., 312. 6d.</td>
<td>24</td>
</tr>
<tr>
<td>Electric Illumination, by Dredge and others, 30s.</td>
<td>14</td>
</tr>
<tr>
<td>Influence Machines, 42. 6d.</td>
<td>38</td>
</tr>
<tr>
<td>Lamps, Fleming, 7s. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>Light Cables, Russell, 7s. 6d.</td>
<td>7</td>
</tr>
<tr>
<td>Light Karbons, 12. 6d.</td>
<td>25</td>
</tr>
<tr>
<td>Light Fitting, Allsop, 5s.</td>
<td>36</td>
</tr>
<tr>
<td>Light Installation, Salomons', 3 vols. Vol. I., Accumulators, 52s.</td>
<td>4</td>
</tr>
<tr>
<td>Vol. II., Apparatus, 7s. 6d. Vol. III., Application, 52s.</td>
<td>4</td>
</tr>
<tr>
<td>Light Installations, Salomons', 1 vol., 6s.</td>
<td>38</td>
</tr>
<tr>
<td>Light and Power, Guy, 5s.</td>
<td>29</td>
</tr>
<tr>
<td>Lighting, Bax, 22.</td>
<td>20</td>
</tr>
<tr>
<td>Lighting of Colliery, 25. 6d.</td>
<td>26</td>
</tr>
<tr>
<td>Lighting, Guide to, 12.</td>
<td>16</td>
</tr>
<tr>
<td>Lighting Specifications, 6s.</td>
<td>18</td>
</tr>
<tr>
<td>Lighting, Maycock, 6s.</td>
<td>31</td>
</tr>
<tr>
<td>Lighting, T. C. a Handbook, 12.</td>
<td>18</td>
</tr>
<tr>
<td>Motive Power, Snell, 10s.</td>
<td>23</td>
</tr>
<tr>
<td>Railways, Crosby and Bell, 10s. 6d.</td>
<td>17</td>
</tr>
<tr>
<td>Railways, Hering, 52s.</td>
<td>37</td>
</tr>
<tr>
<td>Tractation, Reckenzauan, 10s. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>Transformers, Kapp</td>
<td>18</td>
</tr>
<tr>
<td>Transformers, Weekes, 25.</td>
<td>18</td>
</tr>
<tr>
<td>Transmission of Energy, Kapp, 10s. 6d.</td>
<td>3</td>
</tr>
<tr>
<td>Wiring Tables, 25. 6d.</td>
<td>25</td>
</tr>
<tr>
<td>Electrical Engineering, 42. 6d.</td>
<td>16</td>
</tr>
<tr>
<td>Engineering, Biggs, 25. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>Engineering Formulae, 7s. 6d.</td>
<td>22</td>
</tr>
<tr>
<td>Engineering, Kapp and others, 42s.</td>
<td>19</td>
</tr>
<tr>
<td>Energy, Kapp, 10s. 6d.</td>
<td>3</td>
</tr>
<tr>
<td>Energy, Planté, 12s.</td>
<td>25</td>
</tr>
<tr>
<td>Engineers' Tables, &c., 25.</td>
<td>25</td>
</tr>
<tr>
<td>Experiments, Bonney, 25. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>Distribution, Kilgour, 10s. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>Instrument Making, 3s.</td>
<td>37</td>
</tr>
<tr>
<td>Lab. Notes, Fleming, 12s. 6d. net</td>
<td>21</td>
</tr>
<tr>
<td>Measurements, Arithmetic of, 12.</td>
<td>18</td>
</tr>
<tr>
<td>Terms, Houston, 21s.</td>
<td>18</td>
</tr>
<tr>
<td>Electricity, Alternating Currents of, Bedell and Crehere, 10s. 6d.</td>
<td>16</td>
</tr>
<tr>
<td>Alternating Currents of, Blakesley, 52s.</td>
<td>7</td>
</tr>
<tr>
<td>Alternating Currents of, Fleming, 2 vols., 20s.</td>
<td>21</td>
</tr>
<tr>
<td>Alternating Currents of, Kapp, 42. 6d.</td>
<td>18</td>
</tr>
<tr>
<td>Alternating Currents of, Experiments, 42. 6d.</td>
<td>18</td>
</tr>
<tr>
<td>Tesla, 42. 6d.</td>
<td>18</td>
</tr>
<tr>
<td>Portable, Niblett, 22. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>Electricity, Houston, 3 vols. 13s. 6d.</td>
<td>38</td>
</tr>
<tr>
<td>and Magnetism, Bottone, 25. 6d.</td>
<td>39</td>
</tr>
<tr>
<td>and Magnetism, Maycock, 25. 6d.</td>
<td>31</td>
</tr>
<tr>
<td>in our Homes, Walker, 6s.</td>
<td>33</td>
</tr>
<tr>
<td>Primers, 3d. each</td>
<td>22</td>
</tr>
<tr>
<td>Static, Atkinson, 6s. 6d.</td>
<td>18</td>
</tr>
<tr>
<td>Electro chemistry, Gore, 2s.</td>
<td>22</td>
</tr>
<tr>
<td>Electro-deposition, Gore, 12. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>Electro-Magnetic Theory, Heaviside, Vol. I., 12s. 6d.</td>
<td>37</td>
</tr>
<tr>
<td>Electro-motors, Bottone, 3s.</td>
<td>22</td>
</tr>
<tr>
<td>Electric-platers' H.B. Bonney, 3s.</td>
<td>34</td>
</tr>
<tr>
<td>Electrolytic Separation, Gore, 10s. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>Engineers' Pocket-book, 12. or 12s. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>English Minstrelsy, 4s.</td>
<td>29</td>
</tr>
<tr>
<td>Ewing's Induction, 10s. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>Explosives, Guttmann, 2 vols., 21. 6d.</td>
<td>4</td>
</tr>
<tr>
<td>FAIRBURN'S Crests, 2 vols., 41. 42.</td>
<td>29</td>
</tr>
<tr>
<td>Findlay's English Railway, 7s. 6d.</td>
<td>12</td>
</tr>
<tr>
<td>Fitting, Horner, 5s.</td>
<td>36</td>
</tr>
<tr>
<td>Electric Light, Allsop, 5s.</td>
<td>36</td>
</tr>
<tr>
<td>Pittau's Atlas of Human Brain, 16s. net</td>
<td>41</td>
</tr>
<tr>
<td>Fleming's Transformers. Vol. I., 12s. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>Vol. II., 12s. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>Electric Lamps, 7s. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>Electric Lab. Notes, 12s. 6d. net</td>
<td>21</td>
</tr>
<tr>
<td>Fletcher's Steam Jacket, 7s. 6d.</td>
<td>6</td>
</tr>
<tr>
<td>Foster's Mechanical Tables, 12. 6d.</td>
<td>27</td>
</tr>
<tr>
<td>Forestry, Webster, 35. 6d.</td>
<td>26</td>
</tr>
<tr>
<td>Formulae for Electrical Engineers, 7s. 6d.</td>
<td>22</td>
</tr>
<tr>
<td>Forth Bridge, 5s.</td>
<td>15</td>
</tr>
<tr>
<td>Foster's Central Station Bkg., 10s. 6d.</td>
<td>17</td>
</tr>
<tr>
<td>Fox-Davies' Book of Crests, 41. 42.</td>
<td>20</td>
</tr>
<tr>
<td>Armorial Families, 51. 5s.</td>
<td>28</td>
</tr>
<tr>
<td>GASEOUS Fuel, 1s. 6d.</td>
<td>25</td>
</tr>
<tr>
<td>Gearing, Helical, 7s. 6d.</td>
<td>8</td>
</tr>
<tr>
<td>Geipel and Kilgour's El. Formule, 7s. 6d.</td>
<td>29</td>
</tr>
<tr>
<td>Geology, Jukes-Browne, 25. 6d.</td>
<td>39</td>
</tr>
<tr>
<td>German Technological Dictionary, 5s.</td>
<td>28</td>
</tr>
<tr>
<td>Gibbings' Dynamo Attendants, 12.</td>
<td>24</td>
</tr>
<tr>
<td>Godfrey's Water Supply, 25.</td>
<td>21</td>
</tr>
<tr>
<td>Gore's Electro-Chemistry, 2s.</td>
<td>22</td>
</tr>
<tr>
<td>Electro-deposition, 12s. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>Metals, 10s. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>Gray's Influence Machines, 4s. 6d.</td>
<td>38</td>
</tr>
<tr>
<td>Griffith's Manures, 7s. 6d.</td>
<td>10</td>
</tr>
<tr>
<td>Guttmann's Explosives, 2 vols., 21. 6d.</td>
<td>4</td>
</tr>
<tr>
<td>Guy's Electric Light and Power, 5s.</td>
<td>19</td>
</tr>
<tr>
<td>HATCH'S Mineralogy, 25. 6d.</td>
<td>39</td>
</tr>
<tr>
<td>Hawkins and Wallis's Dynamo, 10s. 6d.</td>
<td>2</td>
</tr>
<tr>
<td>Heat Engines, Anderson, 6s.</td>
<td>8</td>
</tr>
<tr>
<td>Heaviside's Electro-magnetic Theory. Vol. I., 12s. 6d.</td>
<td>22</td>
</tr>
<tr>
<td>Helical Gears, 7s. 6d.</td>
<td>8</td>
</tr>
<tr>
<td>Herring, Electric Railways, 5s.</td>
<td>17</td>
</tr>
<tr>
<td>Hertz' Work, Lodge, 25. 6d. net</td>
<td>22</td>
</tr>
<tr>
<td>Hewitt and Pope's Elem. Chem, 9d. net</td>
<td>30</td>
</tr>
<tr>
<td>Highways Management, Hooley, 12.</td>
<td>20</td>
</tr>
<tr>
<td>Bridges, Silcock</td>
<td>20</td>
</tr>
<tr>
<td>Hobbs' Electrical Arithmetic, 12.</td>
<td>25</td>
</tr>
<tr>
<td>Hoblyn's Medical Dictionary, 10s. 6d.</td>
<td>40</td>
</tr>
<tr>
<td>Holtzappel's Turning, 5 vols., 9s.</td>
<td>27</td>
</tr>
<tr>
<td>Hooley's Highways, 12.</td>
<td>20</td>
</tr>
<tr>
<td>Hopkinson's Dynamo Machinery, 52s.</td>
<td>37</td>
</tr>
</tbody>
</table>
Whittaker's Technological and Scientific List.

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horner's Fitting, 52.</td>
<td>32</td>
</tr>
<tr>
<td>Houston's Electrical Terms, 52.</td>
<td>18</td>
</tr>
<tr>
<td>Hurter's Alkali Makers' Handbk, 105. 6d.</td>
<td>9</td>
</tr>
<tr>
<td>Hutton's Mathematical Tables, 125.</td>
<td>16</td>
</tr>
<tr>
<td>Hydraulic Motors, Bodmer, 145.</td>
<td>6</td>
</tr>
<tr>
<td>--- Machinry, Marks, 52.</td>
<td>24</td>
</tr>
<tr>
<td>--- IMRAY and Biggs' Mechanical Engineering, 32. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>--- Incandescent Lamp, Ram, 75. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Indicator, Day, 45. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Induction Coils, Bonney, 32.</td>
<td>34</td>
</tr>
<tr>
<td>--- Industrial Instruction, Seidel, 25. 6d.</td>
<td>44</td>
</tr>
<tr>
<td>--- Injectors, Pullen, 32.</td>
<td>33</td>
</tr>
<tr>
<td>--- Innes's Centrifugal Pumps, 32. 6d.</td>
<td>24</td>
</tr>
<tr>
<td>--- Machine Design, 32. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Inventions, How to Patent, 25. 6d. net</td>
<td>27</td>
</tr>
<tr>
<td>--- Iron Analysis, Arnold, 105. 6d.</td>
<td>2</td>
</tr>
<tr>
<td>--- Analysis, Blair, 165.</td>
<td>14</td>
</tr>
<tr>
<td>--- and Steel, Skelton, 52.</td>
<td>19</td>
</tr>
<tr>
<td>--- Ironfounders, 45.</td>
<td>33</td>
</tr>
<tr>
<td>--- JACOB'S Laundry Work, 25.</td>
<td>44</td>
</tr>
<tr>
<td>--- JACOB'S Printer's Handbook, 52.</td>
<td>44</td>
</tr>
<tr>
<td>--- Jukes-Browne's Geology, 32. 6d.</td>
<td>39</td>
</tr>
<tr>
<td>--- KAPP'S Alternating Currents, 45. 6d.</td>
<td>18</td>
</tr>
<tr>
<td>--- Dynamos, &c., 105. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>--- Elect. Transmissions of Energy, 105. 6d.</td>
<td>3</td>
</tr>
<tr>
<td>--- Transformers, 105. 6d.</td>
<td>1</td>
</tr>
<tr>
<td>--- Kennelly's Electrical Notes, 62. 6d.</td>
<td>21</td>
</tr>
<tr>
<td>--- Kilgour's Electrical Formule, 72. 6d.</td>
<td>22</td>
</tr>
<tr>
<td>--- Electrical Distribution, 105. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>--- LABORATORY (Mechanical) Work, 105. 6d. net</td>
<td>30</td>
</tr>
<tr>
<td>--- Laundry Work, Jack, 25.</td>
<td>44</td>
</tr>
<tr>
<td>--- Leather Work, Leland's, 52.</td>
<td>43</td>
</tr>
<tr>
<td>--- Leland's Wood-carving, 52. Metal Work, 52. Leather Work, 52.</td>
<td>42</td>
</tr>
<tr>
<td>--- Drawing and Designing, 12. and 16. 6d. Practical Education, 62.</td>
<td>43</td>
</tr>
<tr>
<td>--- Lens Work for Amateurs, Orford, 32.</td>
<td>34</td>
</tr>
<tr>
<td>--- Lenses, Photograph, Traill Taylor, 32. 6d.</td>
<td>35</td>
</tr>
<tr>
<td>--- Library of Art, Sciences, &c.</td>
<td>31</td>
</tr>
<tr>
<td>--- of Great Industries, 114 6d. sc.</td>
<td>114</td>
</tr>
<tr>
<td>--- of Pop. Science, 25. 6d. per vol.</td>
<td>39</td>
</tr>
<tr>
<td>--- Light, Sir H. T. Wood, 25. 6d.</td>
<td>39</td>
</tr>
<tr>
<td>--- Lightning Conductors, Lodge, 155.</td>
<td>39</td>
</tr>
<tr>
<td>--- Lockwood's Telephone Men, 45. 6d.</td>
<td>18</td>
</tr>
<tr>
<td>--- Locomotives, Cooke, 75. 6d.</td>
<td>11</td>
</tr>
<tr>
<td>--- Reynolds, 25. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>--- Lodge's Lightning Conductors, 155.</td>
<td>39</td>
</tr>
<tr>
<td>--- Hertz, 25. 6d. net</td>
<td>22</td>
</tr>
<tr>
<td>--- Luiken's Turning Lathes, 32.</td>
<td>26</td>
</tr>
<tr>
<td>--- Screws, 32.</td>
<td>26</td>
</tr>
<tr>
<td>--- Lunge and Hurter's Alkali Makers' Handbook, 105. 6d.</td>
<td>9</td>
</tr>
<tr>
<td>--- MACHINE Design, Innes, 32. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Maginnis' Atlantic Ferry, 75. 6d. and 25. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Magnetic Induction, Ewing, 105. 6d.</td>
<td>20</td>
</tr>
<tr>
<td>--- Manchester Ship Canal, 32. 6d.</td>
<td>15</td>
</tr>
<tr>
<td>--- Manual Instruction and Training</td>
<td>42</td>
</tr>
<tr>
<td>--- Manures, Griffiths, 75. 6d.</td>
<td>10</td>
</tr>
<tr>
<td>--- Marine Engineering, Maw, 32.</td>
<td>14</td>
</tr>
<tr>
<td>--- Marks' Cranes, &c., 25. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Hydraulic Machinery, 32.</td>
<td>24</td>
</tr>
<tr>
<td>--- Mechanical Engineering, 25. 6d.</td>
<td>24</td>
</tr>
<tr>
<td>--- Marshall's Cakes, 12.</td>
<td>44</td>
</tr>
<tr>
<td>--- Mason's Sanitation</td>
<td>32</td>
</tr>
<tr>
<td>--- Massie's, The Plant World, 25. 6d.</td>
<td>39</td>
</tr>
<tr>
<td>--- Mathematical Tables, 125.</td>
<td>16</td>
</tr>
<tr>
<td>--- Maw's Quadruplex, 65.</td>
<td>17</td>
</tr>
<tr>
<td>--- Maw's Marine Engineering, 32.</td>
<td>14</td>
</tr>
<tr>
<td>--- May's Ballooning, 32.</td>
<td>4</td>
</tr>
<tr>
<td>--- Belting Table, 25. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Electric Light Plant, 25. 6d.</td>
<td>23</td>
</tr>
<tr>
<td>--- Maycock's Electr. and Magnet., 25. 6d.</td>
<td>31</td>
</tr>
<tr>
<td>--- Electric Lighting, 65.</td>
<td>31</td>
</tr>
<tr>
<td>--- Mechanical Tables, 125.</td>
<td>27</td>
</tr>
<tr>
<td>--- Eng. IMRAY and Biggs, 32. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>--- Material, Marks, 12. 6d.</td>
<td>24</td>
</tr>
<tr>
<td>--- Medical Terms, Hoblyn, 105. 6d.</td>
<td>40</td>
</tr>
<tr>
<td>--- Merrill's El. Lighting Specifications, 62.</td>
<td>48</td>
</tr>
<tr>
<td>--- Metal Turning, 45.</td>
<td>33</td>
</tr>
<tr>
<td>--- Work, Leland, 52.</td>
<td>43</td>
</tr>
<tr>
<td>--- Metallurgy, Gold, 315. 6d. Silver and Mercury, 315. 6d.</td>
<td>47</td>
</tr>
<tr>
<td>--- Metric Measures, Born, 32.</td>
<td>14</td>
</tr>
<tr>
<td>--- Middleton's Surveying, 45. 6d.</td>
<td>2</td>
</tr>
<tr>
<td>--- Mill Work, Sutcliffe, 25.</td>
<td>8</td>
</tr>
<tr>
<td>--- Mineralogy, Hatch, 25.</td>
<td>39</td>
</tr>
<tr>
<td>--- Minstrelsy, English, 8 vols., 47. Scots, 6 vols., 21. 113.</td>
<td>29</td>
</tr>
<tr>
<td>--- Model Steam Engine Making, 105. 6d.</td>
<td>12</td>
</tr>
<tr>
<td>--- NADIEINE, Drainage, 15.</td>
<td>10</td>
</tr>
<tr>
<td>--- Niblett's Electricity, 25. 6d.</td>
<td>19</td>
</tr>
<tr>
<td>--- Nicholl's Agr. Engg. in India, 32. 6d.</td>
<td>14</td>
</tr>
<tr>
<td>--- OPTICAL Instruments, Orford</td>
<td>34</td>
</tr>
<tr>
<td>--- Optics of Photography, 32. 6d.</td>
<td>35</td>
</tr>
<tr>
<td>--- Orford's Lens Work, 32.</td>
<td>34</td>
</tr>
<tr>
<td>--- Modern Optical Instruments</td>
<td>34</td>
</tr>
<tr>
<td>--- PARKHURST'S Dynamo Building, 45. 6d.</td>
<td>17</td>
</tr>
<tr>
<td>--- Patenting Inventions, 25. 6d. net</td>
<td>37</td>
</tr>
<tr>
<td>--- Pattern Making, 32. 6d.</td>
<td>32</td>
</tr>
<tr>
<td>--- Petroleum, Boyd, 25.</td>
<td>28</td>
</tr>
<tr>
<td>--- Philosophical Mag., Monthly, 25. 6d. net</td>
<td>39</td>
</tr>
<tr>
<td>--- Photographic Lenses, Taylor, 32. 6d.</td>
<td>35</td>
</tr>
<tr>
<td>--- Plant World, Massie, 25.</td>
<td>39</td>
</tr>
<tr>
<td>--- Plante's Electrical Storage, 125.</td>
<td>25</td>
</tr>
<tr>
<td>--- Poole's Telephone Handbook, 52.</td>
<td>35</td>
</tr>
<tr>
<td>--- Practical Education, 65.</td>
<td>43</td>
</tr>
<tr>
<td>--- Freetie's Telephony, 155.</td>
<td>44</td>
</tr>
<tr>
<td>--- Price's Hoblyn's Dictionary, 105. 6d.</td>
<td>40</td>
</tr>
<tr>
<td>--- Primers of Electricity, 32. each.</td>
<td>22</td>
</tr>
<tr>
<td>--- Printer's Handbook, Jacob, 52.</td>
<td>44</td>
</tr>
<tr>
<td>--- Printing, Southward, 105.</td>
<td>44</td>
</tr>
<tr>
<td>--- Pruning, Des Cars, 25.</td>
<td>46</td>
</tr>
<tr>
<td>--- Public Arms, 32. 34.</td>
<td>29</td>
</tr>
<tr>
<td>--- Pullen's Injectors, 32. 6d.</td>
<td>23</td>
</tr>
</tbody>
</table>
48 | Whittaker's Technological and Scientific List.

RAILWAY Management, Findlay, 75. 6d. ... 12
— Material Inspection, Bodmer ... 1
— Pennsylvania, 52s. 6d. ... 16
Ram's Incandescent Lamp, 75. 6d. ... 23
Reckenzaun's Electric Traction, 10s. 6d. ... 20
Refuse Destructors, Jones, 52. ... 20
Repousse, Leland, 52. ... 43
Reynolds' Locomotive, 25. 6d. ... 20
Rose's Bandsman, 25. 6d. ... 29
Russell's Electric Cables, 75. 6d. ... 7
— T. C.'s Handbk. Elec. Lighting, 12. 18

SALOMON'S Electric Light Installation, 6s. ... 38
Vol. III, Applications, 52. ... 4
Sanitary Drainage ... 10
Sanitation, Mason ... 21
Savage's Sewage Disposal, 52. ... 20
Scholl's Phraseological Dictionary, Eng., Ger., Fr., and Span., 21s.
Scots Minstrelsy, 2d. 11s. ... 29
Screws and Screw Making, 3s. ... 26
Screw Propulsion, 15s. ... 8
Seidel's Industrial Instruction, 25. 6d. ... 44
Sewage Disposal, Savage, 52. ... 20
— Treatment, 52. ... 10
Shafting and Gearing, Bale, 25. 6d. ... 25
Ships' Resistance, 15s. ... 8
Silcock's Highway Bridges ... 20
Skelton's Iron and Steel, 52. ... 19
Slater's Sewage Treatment, 6s. ... 10
Sloyd, English, 75. 6d. ... 42
Smith's Cable Traction, 52. ... 15
— How to Patent, 25. 6d. net ... 27
— Wire, 75. 6d. ... 15
Snell's Electric Motive Power, 10s. 6d. ... 23
Southam's Electric Engineering, 45. 6d. ... 16
Southward's Mod. Printing, 10s. 6d. ... 44
Spanish Techn. Dict., a vols., 6s. ... 28
— Specialist's Series ... 1
Steam Engine Indicator, 35. 6d. ... 22
— Jackson, Fletcher, 75. 6d. ... 6
— Locomotives, Cooke, 75. 6d. ... 11
— Model, Alexander, 10s. 6d. ... 12
— Power and Mill Work, Sutcliffe, 21s. ... 8
Steamships, Atlantic, 75. 6d. and 25. 6d. ... 13
Steel Works Analysis, Arnold, 10s. 6d. ... 2
Stevenson's Trees of Commerce, 35. 6d. ... 27
Stubbs' Telephonic, 15s. ... 23
Submarine Cable Laying ... 23
— Mining, 12s. 6d. ... 15
— Telegraphy, Bell, 12. 6d. ... 24
Surveying, Middleton, 45. 6d. ... 2
— Sutcliffe's Steam Power and Mill Work, 91s. ... 8

TALKS with Bandsmen, 25. 6d. ... 29
Taylor's Optics of Photography, 35. 6d. ... 35
— Resistance of Ships, 15s. ... 8
Technological Dictionaries ... 28
Telegraphist's Guide, Bell, 12. 6d. ... 24
Telephone Handbook, Poole, 52. ... 35
Telephoning, Bennett, 12. ... 16
— Lockwood, 45. 6d. ... 18
Telephony, Feree, 15s. ... 1
Tesla's Experiments, 45. 6d. ... 18
Thompson's Chemist's Compendium, 25. 6d. net ... 40
Thwaites's Gasous Fuel, 12. 6d. ... 25
Timber Merchant's Vade Mecum, 45. ... 26
Torpedo, Autobiography of a, 25. ... 16
Tower Bridge. Tutt, 52. ... 15
— Traction, Cable or Rope, 52. ... 15
— Electric, 10s. 6d. ... 20
Transformers, Kapp ... 1
Tree Pruning, Des Cars, 25. 6d. ... 26
Trees of Commerce, Stevenson, 35. 6d. ... 27
Trigonometry (Prac.), Adams, 25. 6d. net ... 30
Tutt, Tower Bridge, 52. ... 15
Turbines and Pressure Engines, 14s. ... 6
Turning, &c., Holtzappfel, 5 vols. 54s. 9d. ... 27
Turning Lathes, Lukin, 34. ... 26
— Metal, 45. ... 33
Typography Questions, 6d. ... 44
— see Jacobi and Southward.

WALKER'S Colliery Lighting, 25. 6d. ... 26
— Dynamo Building, 25. ... 25
— Electricity, 6s. ... 35
Wallis's Dynamo, 10s. 6d. ... 2
Water Supply, Godfrey ... 21
Webster's Practical Forestry, 35. 6d. ... 26
Weekes' Transformer Design, 25. ... 18
Wells' Mechanical Lab. Work, 10s. 6d. net ... 30
Wershoven's German Technological Dictionary, 52. ... 28
Westholen's Fort Bridge, 52. ... 15
Weymouth Drum Armatures, 75. 6d. ... 21
Whittaker's Library of Popular Science, 6 vols. 25. 6d. each ... 39
— Library of Arts, &c. ... 31
— Specialists' Series ... 1
Wiley's Yosemite, 15s. ... 15
Wilkinson's Electrical Notes, 6s. 6d. ... 21
— Cable Laying ... 23
— Wire, by Bucknall Smith, 75. 6d. ... 15
— Table, Boult, 52. ... 25
— Wiring Tables, 25. 6d. ... 25
— Wood's Discount Tables, 25. ... 35
— Light, 25. 6d. ... 39
— Wood Carving, Leland, 52. ... 43
— Woodward's Manual Training, 52. ... 44
— Work, Barter, 75. 6d. ... 42
— Joints, Adams, 12. ... 30
— Woven Design, Beaumont, 21s. ... 9
— Wyatt's Diff. and Integ. Calculus, 35. 6d. ... 30

YOSEMITE, Alaska, &c., Wiley, 15s. 15

This book is due on the last date stamped below.

An initial fine of 25 cents will be assessed for failure to return this book on the date due. The penalty will increase to 50 cents on the fourth day and to $1.00 on the seventh day overdue.

APR 3 1942

APR 20 1942

NOV 2 1946

NOV 2 1946

9 JUL '64

REC'D LD

JUN 25 '64 2 PM

LD 21-100m-7, '39 (402s)